Citation: | YAN Mingfei, JIN Yan, WEI Shiming, et al. Study on evolution law of fracture toughness of ultra-deep layered shale [J]. Petroleum Drilling Techniques, 2025, 53(2):1−9. DOI: 10.11911/syztjs.2025032 |
To gain a comprehensive understanding of the longitudinal hydraulic fracture propagation mechanism in ultra-deep shale reservoirs, the study systematically analyzes the influence of high stress and bedding properties on shale fracture characteristics. Initially, shale mechanical parameters are obtained through triaxial compression experiments. Subsequently, a three-point bending numerical model of a semi-circular shale plate with confining pressure is constructed using the particle discrete element method to simulate the fracture process under various conditions. The numerical simulation results demonstrate that increasing confining pressure significantly enhances shale fracture toughness, and the influence of bedding plane angle and density on fracture toughness is amplified with increasing confining pressure. Specifically, at the same confining pressure, fracture toughness decreases with an increase in bedding plane angle and exhibits a minor variation with an increase in bedding plane density, indicating that bedding plane density has a greater strengthening effect on fracture toughness than bedding plane angle. Based on these findings, a quantitative chart illustrating the impact of varying confining pressure and bedding plane properties on shale fracture toughness is developed, and a quantitative relationship between fracture toughness and confining pressure, bedding plane angle, and density is fitted. The study reveals the complex influence of bedding properties on fracture characteristics under high stress conditions in ultra-deep shale reservoirs, potentially providing a theoretical basis for optimizing hydraulic fracturing designs and effectively controlling hydraulic fracture propagation behavior.
[1] |
MAHANTA B, TRIPATHY A, VISHAL V, et al. Effects of strain rate on fracture toughness and energy release rate of gas shales[J]. Engineering Geology, 2017, 218: 39–49. doi: 10.1016/j.enggeo.2016.12.008
|
[2] |
ATKINSON C, SMELSER R E, SANCHEZ J. Combined mode fracture via the cracked Brazilian disk test[J]. International Journal of Fracture, 1982, 18(4): 279–291.
|
[3] |
吕有厂. 层理性页岩断裂韧性的加载速率效应试验研究[J]. 岩石力学与工程学报,2018,37(6):1359–1370.
LYU Youchang. Effect of bedding plane direction on fracture toughness of shale under different loading rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1359–1370.
|
[4] |
陈勉,金衍,袁长友. 围压条件下岩石断裂韧性的实验研究[J]. 力学与实践,2001,23(4):32–35. doi: 10.3969/j.issn.1000-0879.2001.04.010
CHEN Mian, JIN Yan, YUAN Changyou. Study on the experiment for fracture toughness under confining pressure[J]. Mechanics in Engineering, 2001, 23(4): 32–35. doi: 10.3969/j.issn.1000-0879.2001.04.010
|
[5] |
董京楠,金衍,陈勉,等. 页岩Ⅰ型断裂韧性测试及跨尺度裂缝表征研究[J]. 地下空间与工程学报,2019,15(增刊1):205–210.
DONG Jingnan, JIN Yan, CHEN Mian, et al. Study on shale fracture toughness and micro-characterization of mode Ⅰ crack using DCB specimen and SEM method[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(supplement 1): 205–210.
|
[6] |
余海棠,丁乙,刘艳梅,等. 考虑水化损伤作用的页岩动态自吸模型[J]. 石油钻探技术,2023,51(5):139–148. doi: 10.11911/syztjs.2023054
YU Haitang, DING Yi, LIU Yanmei, et al. A dynamical spontaneous imbibition model for shale considering hydration damage[J]. Petroleum Drilling Techniques, 2023, 51(5): 139–148. doi: 10.11911/syztjs.2023054
|
[7] |
金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023,51(4):159–169. doi: 10.11911/syztjs.2023024
JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale[J]. Petroleum Drilling Techniques, 2023, 51(4): 159–169. doi: 10.11911/syztjs.2023024
|
[8] |
谭鹏,陈朝伟,赵庆,等. 页岩气多簇压裂断层活化机理与控制方法[J]. 石油钻探技术,2024,52(6):107–116. doi: 10.11911/syztjs.2024120
TAN Peng, CHEN Zhaowei, ZHAO Qing, et al. Mechanism and control method of fault activation by multi-cluster fracturing of shale gas[J]. Petroleum Drilling Techniques, 2024, 52(6): 107–116. doi: 10.11911/syztjs.2024120
|
[9] |
刘彧轩,杨兴贵,郭建春. 纵向无限级多薄层储层裂缝穿层扩展规律[J]. 断块油气田,2024,31(6):1076–1082.
LIU Yuxuan, YANG Xinggui, GUO Jianchun. Fracture through-layer propagation law in longitudinal infinite multiple thin layer reservoirs[J]. Fault-Block Oil & Gas Field, 2024, 31(6): 1076–1082.
|
[10] |
田建超,张艺,李凝,等. 页岩油水力压裂裂缝特征场地级数值模拟优化方法[J]. 石油钻采工艺,2024,46(3):326–335.
TIAN Jianchao, ZHANG Yi, LI Ning, et al. Numerical simulation optimization method for site-level hydraulic fracturing fracture characteristics in shale oil[J]. Oil Drilling & Production Technology, 2024, 46(3): 326–335.
|
[11] |
赵彦昕,许文俊,王雷,等. 陆相页岩储层水力裂缝穿层扩展规律[J]. 石油钻采工艺,2023,45(1):76–84.
ZHAO Yanxin, XU Wenjun, WANG Lei, et al. Through-layer propagation laws of hydraulic fractures in continental shale reservoirs[J]. Oil Drilling & Production Technology, 2023, 45(1): 76–84.
|
[12] |
熊健,吴俊,刘向君,等. 陆相页岩储层地质力学特性及对压裂效果的影响[J]. 西南石油大学学报(自然科学版),2023,45(5):69–80.
XIONG Jian, WU Jun, LIU Xiangjun, et al. The geomechanical characteristics of the continental shale reservoirs and their influence on the fracturing effect[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(5): 69–80.
|
[13] |
张景轩,范晓,陈波,等. 硬脆性页岩断裂韧性二维数值模拟研究[J]. 复杂油气藏,2019,12(1):73–80.
ZHANG Jingxuan, FAN Xiao, CHEN Bo, et al. Two-dimensional numerical simulation of fracture toughness of hard brittle shale[J]. Complex Hydrocarbon Reservoirs, 2019, 12(1): 73–80.
|
[14] |
XU Yuan, DAI Feng, ZHAO Tao, et al. Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles[J]. Rock Mechanics and Rock Engineering, 2016, 49(8): 3083–3093. doi: 10.1007/s00603-016-0978-0
|
[15] |
YIN Tubing, ZHANG Shuaishua, LI Xibing, et al. A numerical estimate method of dynamic fracture initiation toughness of rock under high temperature[J]. Engineering Fracture Mechanics, 2018, 204: 87–102. doi: 10.1016/j.engfracmech.2018.09.034
|
[16] |
KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267–274. doi: 10.1007/s00603-013-0422-7
|
[17] |
张昊天,周文,曹茜,等. 基于应力—应变模型的脆塑性测井评价[J]. 测井技术,2018,42(3):331–337.
ZHANG Haotian, ZHOU Wen, CAO Qian, et al. Log evaluation method of the brittle-plastic parameters based on stress-strain model[J]. Well Logging Technology, 2018, 42(3): 331–337.
|
[18] |
POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
|
[19] |
李庆辉,陈勉,金衍,等. 页岩气储层岩石力学特性及脆性评价[J]. 石油钻探技术,2012,40(4):17–22. doi: 10.3969/j.issn.1001-0890.2012.04.004
LI Qinghui, CHEN Mian, JIN Yan, et al. Rock mechanical properties and brittleness evaluation of shale gas reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17–22. doi: 10.3969/j.issn.1001-0890.2012.04.004
|
1. |
薛长荣,陈润生. 低渗透油田压裂技术研究分析. 石化技术. 2024(06): 117-119 .
![]() | |
2. |
王纪伟,宋丽阳,康玉柱. 暂堵转向技术在页岩油气中的应用分析与发展方向. 断块油气田. 2024(06): 1122-1128 .
![]() | |
3. |
王哲,曹广胜,白玉杰,王培伦,王鑫. 低渗透油藏提高采收率技术现状及展望. 特种油气藏. 2023(01): 1-13 .
![]() | |
4. |
刘彝,刘玲,姜喜梅,于洋洋,吴均. 大斜度井精细分段压裂技术研究及应用. 中国矿业. 2023(S1): 470-474 .
![]() | |
5. |
邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 .
![]() | |
6. |
于海山,刘洪俊,王庆太. 低渗透油田套损井压裂技术应用与效果分析. 石油石化节能与计量. 2023(10): 17-21 .
![]() | |
7. |
刘彝,杨辉,吴佐浩. 强变形暂堵转向压裂技术研究及应用. 钻井液与完井液. 2022(01): 114-120 .
![]() | |
8. |
胡智凡. 大庆低渗透储层直井多分支缝重复压裂提产试验. 采油工程. 2022(01): 16-20+81-82 .
![]() | |
9. |
达引朋,李建辉,王飞,黄婷,薛小佳,余金柱. 长庆油田特低渗透油藏中高含水井调堵压裂技术. 石油钻探技术. 2022(03): 74-79 .
![]() | |
10. |
刘尧文,明月,张旭东,卞晓冰,张驰,王海涛. 涪陵页岩气井“套中固套”机械封隔重复压裂技术. 石油钻探技术. 2022(03): 86-91 .
![]() | |
11. |
何成江,姜应兵,文欢,李翔. 塔河油田缝洞型油藏“一井多控”高效开发关键技术. 石油钻探技术. 2022(04): 37-44 .
![]() | |
12. |
胡智凡,王贤君,王晓娟,王维,陈希迪. 直井缝内暂堵转向压裂分支缝起裂方向研究. 石油地质与工程. 2022(05): 111-114 .
![]() | |
13. |
张金发,李亭,吴警宇,管英柱,徐摩,但植华,周明秀. 特低渗透砂岩储层敏感性评价与酸化增产液研制. 特种油气藏. 2022(05): 166-174 .
![]() | |
14. |
张瀚澜,赖小娟,王鹏程,杨文飞,刘学文,马锐,曹建坤,杨明亮. 新型自降解压裂转向材料的合成与表征. 科学技术与工程. 2022(35): 15586-15591 .
![]() | |
15. |
王贤君,胡智凡,张洪涛,陈希迪,王维. 大庆外围低渗透油田直井多分支缝压裂提产技术. 石油钻采工艺. 2022(05): 632-636 .
![]() | |
16. |
朱瑞彬,王鑫,许正栋,刘国华,李凝,龙长俊,宋立,贾江芬. 吉兰泰浅层变质岩储层水平井压裂技术. 石油钻采工艺. 2022(06): 733-739 .
![]() | |
17. |
秦浩,汪道兵,李敬法,孙东亮,宇波. 基于黏聚层单元的缝内暂堵压力演化规律的有限元数值研究. 科学技术与工程. 2021(10): 4011-4019 .
![]() | |
18. |
王磊,盛志民,赵忠祥,宋道海,王丽峰,王刚. 吉木萨尔页岩油水平井大段多簇压裂技术. 石油钻探技术. 2021(04): 106-111 .
![]() | |
19. |
侯祥丽,邓璐. 石油低渗透储层安全损害评价方法. 能源与环保. 2021(09): 142-148 .
![]() | |
20. |
武月荣,高岗,谷向东. 苏里格气田水平井段内精细分簇压裂技术研究与应用. 钻采工艺. 2021(06): 59-63 .
![]() | |
21. |
王晓蕾,张超会,张洪涛,胡智凡,魏天超. 致密油储层直井多分支缝压裂提产试验. 采油工程. 2021(02): 11-16+91 .
![]() | |
22. |
梁玉凯,于晓聪,袁辉,阚长宾,陶世林,马丁. 低渗透油藏自发生成中相微乳液洗油体系. 油田化学. 2021(04): 690-696 .
![]() | |
23. |
王峻源,徐太平,周京伟,袁发明. 高强度长效暂堵剂在水平井重复压裂上的应用. 化工设计通讯. 2020(08): 83-85 .
![]() | |
24. |
岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发. 2020(05): 70-76 .
![]() | |
25. |
蔡卓林,赵续荣,南荣丽,陈华生,李秀辉,梁天博. 暂堵转向结合高排量体积重复压裂技术. 断块油气田. 2020(05): 661-665 .
![]() | |
26. |
覃孝平,吴均,李翠霞,卢军凯. 压裂用水溶性暂堵剂的合成及性能. 石油化工. 2020(09): 898-904 .
![]() | |
27. |
李翠霞,覃孝平,张琰,赵彬. 水溶性AM-AA-NVP-AMPS-PDE暂堵剂的合成与性能. 化学研究与应用. 2020(10): 1884-1890 .
![]() | |
28. |
施建国,于洋,王黎,李立,宋志龙. 超大粒径暂堵剂注入装置研究. 石油矿场机械. 2020(06): 74-78 .
![]() |