ZHAO Xiangyang. Experimental study on influence of solid particles on stress sensitivity of fractures in tight oil and gas reservoirs [J]. Petroleum Drilling Techniques, 2024, 52(3):68-74. DOI: 10.11911/syztjs.2024050
Citation: ZHAO Xiangyang. Experimental study on influence of solid particles on stress sensitivity of fractures in tight oil and gas reservoirs [J]. Petroleum Drilling Techniques, 2024, 52(3):68-74. DOI: 10.11911/syztjs.2024050

Experimental Study on Influence of Solid Particles on Stress Sensitivity of Fractures in Tight Oil and Gas Reservoirs

More Information
  • Received Date: October 20, 2023
  • Revised Date: February 17, 2024
  • Accepted Date: May 15, 2024
  • Available Online: May 19, 2024
  • Fractures in tight oil and gas reservoirs are critical fluid seepage channels, and their stress sensitivity significantly influences the production of oil and gas wells. Solid particles play a crucial role in affecting the stress sensitivity of fractures. This study examined the impact of solid particles on fracture stress sensitivity in a laboratory setting under various conditions, including the presence or absence of solid particles, different paving methods of solid particles, and varying particle concentrations. The results indicate that the stress sensitivity of fractures, ranked from highest to lowest, is as follows: no solid particles, fully paved with low-concentration solid particles, fully paved with medium-concentration solid particles, fully paved with high-concentration solid particles, half-filled with medium-concentration solid particles, and high-diversion and paved solid particles. The presence of solid particles effectively reduces the stress sensitivity of fractures, and the damage to the stress sensitivity of fractures is irreversible. These findings provide a theoretical basis for preventing and controlling damage to the stress sensitivity of fractures.

  • [1]
    孙金声,许成元,康毅力,等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术,2020,48(4):1–10.

    SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1–10.
    [2]
    XU Chengyuan, YOU Zhenjiang, KANG Yili, et al. Stochastic modelling of particulate suspension transport for formation damage prediction in fractured tight reservoir[J]. Fuel, 2018, 221: 476–490. doi: 10.1016/j.fuel.2018.02.056
    [3]
    许成元,闫霄鹏,康毅力,等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发,2020,47(2):399–408.

    XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of plugging zone in deed naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 399–408.
    [4]
    侯腾飞,张士诚,马新仿,等. 支撑剂非均匀分布对页岩气井产能的影响[J]. 西安石油大学学报(自然科学版),2017,32(1):75–82.

    HOU Tengfei, ZHANG Shicheng, MA Xinfang, et al. Influence of non-uniform distribution of proppant on productivity of shale gas well[J]. Journal of Xi’an Shiyou University(Natural Science), 2017, 32(1): 75–82.
    [5]
    熊俊杰. 支撑剂铺砂方式对其导流能力影响研究[J]. 石油化工应用,2017,36(9):32–34.

    XIONG Junjie. The research of the influence of sanding way on proppant flow conductivity[J]. Petrochemical Industry Application, 2017, 36(9): 32–34.
    [6]
    李猛,宋博,蔡福宝,等. 砂砾岩储层压裂过程中的支撑剂铺置设计[J]. 化工管理,2017(34):224.

    LI Meng, SONG Bo, CAI Fubao, et al. Design of proppant placement during fracturing of sandstone reservoirs[J]. Chemical Enterprise Management, 2017(34): 224.
    [7]
    温庆志,杨英涛,王峰,等. 新型通道压裂支撑剂铺置试验[J]. 中国石油大学学报(自然科学版),2016,40(5):112–117.

    WEN Qingzhi, YANG Yingtao, WANG Feng, et al. Experimental study on an innovative proppant placement method for channel fracturing technique[J]. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(5): 112–117.
    [8]
    WANG Jiehao, ELSWORTH D. Role of proppant distribution on the evolution of hydraulic fracture conductivity[J]. Journal of Petroleum Science and Engineering, 2018, 166: 249–262. doi: 10.1016/j.petrol.2018.03.040
    [9]
    康毅力,郑德壮,刘修善,等. 固相侵入对裂缝性碳酸盐岩应力敏感性的影响[J]. 新疆石油地质,2012,33(3):366–369.

    KANG Yili, ZHENG Dezhuang, LIU Xiushan, et al. Impact of solids invasion on stress sensitivity in fractured carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2012, 33(3): 366–369.
    [10]
    金智荣,郭建春,赵金洲,等. 支撑裂缝导流能力影响因素实验研究与分析[J]. 钻采工艺,2007,30(5):36–38.

    JIN Zhirong, GUO Jianchun, ZHAO Jinzhou, et al. Experimental study and analysis for the influence factors on flow conductivity of fracture proppants[J]. Drilling & Production Technology, 2007, 30(5): 36–38.
    [11]
    吴建发,樊怀才,张鉴,等. 页岩人工裂缝应力敏感性实验研究:以川南地区龙马溪组页岩为例[J]. 天然气工业,2022,42(2):71-81.

    WU Jianfa, FAN Huaicai, ZHANG Jian, et al. An experimental study on stress sensitivity of hydraulic fractures in shale: a case study on Longmaxi Formation shale in the southern Sichuan Basin[J]. Natural Gas Industry, 2022, 42(2): 71-81.
    [12]
    蔡树行,李洪建,郭伦文,等. 储层应力敏感性研究进展[J]. 重庆科技学院学报(自然科学版),2010,12(5):46–48.

    CAI Shuhang, LI Hongjian, GUO Lunwen, et al. Research advance of reservoir stress sensitivity[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2010, 12(5): 46–48.
    [13]
    陈维余,刘同敬,温守国,等. 应力敏感裂缝型储层多相渗流规律实验[J]. 石油钻采工艺,2022,44(4):450–460.

    CHEN Weiyu, LIU Tongjing, WEN Shouguo, et al. Experiment on multiphase flow rules in stress-sensitive fractured reservoirs[J]. Oil Drilling & Production Technology, 2022, 44(4): 450–460.
    [14]
    刘绪钢,周涌沂,张骏强,等. 非线性应力作用下裂缝砂岩应力敏感性特征[J]. 西南石油大学学报(自然科学版),2023,45(1):127–135.

    LIU Xugang, ZHOU Yongyi, ZHANG Junqiang, et al. Effect of nonlinear effective pressure on stress sensitivity in fracture sandstones[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(1): 127–135.
    [15]
    盛科鸣,蒋官澄. 基于随机森林算法的油气层敏感性损害预测[J]. 钻井液与完井液,2023,40(4):423–430.

    SHENG Keming, JIANG Guancheng. Prediction of four kinds of sensibility damages to hydrocarbon reservoirs based on random forest algorithm[J]. Drilling Fluid & Completion Fluid, 2023, 40(4): 423–430.
    [16]
    张金发,李亭,吴警宇,等. 特低渗透砂岩储层敏感性评价与酸化增产液研制[J]. 特种油气藏,2022,29(5):166–175.

    ZHANG Jinfa, LI Ting, WU Jingyu, et al. Sensitivity evaluation of ultra-low permeability sandstone reservoir and development of acidizing stimulation fluid[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 166–175.
    [17]
    PEDROSA O A, Jr. Pressure transient response in stress-sensitive formations[R]. SPE 15115, 1986.
    [18]
    兰林,康毅力,陈一健,等. 储层应力敏感性评价实验方法与评价指标探讨[J]. 钻井液与完井液,2005,22(3):1–4.

    LAN Lin, KANG Yili, CHEN Yijian, et al. Discussion on evaluation methods for stress sensitivities of low permeability and tight sandstone reservoirs[J]. Drilling Fluid & Completion Fluid, 2005, 22(3): 1–4.
    [19]
    付兰清. 裂缝对致密砂岩储层应力敏感性及渗流特征影响研究[J]. 长江大学学报(自科版),2016,13(20):14–18.

    FU Lanqing. The effect of fractures on stress sensitivity and seepage characteristics in tight sandstone reservoirs[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(20): 14–18.
    [20]
    蒋海军,鄢捷年,李荣. 裂缝性储层应力敏感性实验研究[J]. 石油钻探技术,2000,28(6):32–33.

    JIANG Haijun, YAN Jienian, LI Rong. Experimental study on stress-sensitivity of fracturing formations[J]. Petroleum Drilling Techniques, 2000, 28(6): 32–33.
    [21]
    林琳,陈琳琳,路小兵,等. 室内试验研究储层应力敏感性[J]. 石油化工应用,2015,34(6):110–114.

    LIN Lin, CHEN Linlin, LU Xiaobing, et al. Indoor experimental study on stress sensitivity of reservoirs[J]. Petrochemical Industry Application, 2015, 34(6): 110–114.
    [22]
    董利飞,岳湘安,徐星,等. 不同渗透率油藏储层应力敏感性实验研究[J]. 地质科技情报,2015,34(6):155–158.

    DONG Lifei, YUE Xiangan, XU Xing, et al. Experimental study on the stress sensitivity in different permeability reservoirs[J]. Geological Science and Technology Information, 2015, 34(6): 155–158.
    [23]
    XU Chengyuan, LIN Chong, KANG Yili, et al. An experimental study on porosity and permeability stress-sensitive behavior of sandstone under hydrostatic compression: characteristics, mechanisms and controlling factors[J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2321–2338. doi: 10.1007/s00603-018-1481-6
    [24]
    王巧智. 支撑剂支撑对页岩储层应力敏感性的影响[J]. 辽宁化工,2022,51(2):266–268.

    WANG Qiaozhi. Effect of proppant support on the stress sensitivity of shale reservoir[J]. Liaoning Chemical Industry, 2022, 51(2): 266–268.
    [25]
    王巧智,江安,苏延辉,等. 用CT扫描技术分析致密砂岩储层应力敏感性[J]. 钻采工艺,2022,45(4):56–60.

    WANG Qiaozhi, JIANG An, SU Yanhui, et al. Stress sensitivity analysis for tight sandstone reservoir by CT scanning technology[J]. Drilling & Production Technology, 2022, 45(4): 56–60.
    [26]
    杨枝,孙金声,张洁,等. 裂缝性碳酸盐岩储层应力敏感性实验研究[J]. 钻井液与完井液,2009,26(6):5–6.

    YANG Zhi, SUN Jinsheng, ZHANG Jie, et al. Experimental study on the stress sensitivity of fractured carbonate reservoirs[J]. Drilling Fluid & Completion Fluid, 2009, 26(6): 5–6.
    [27]
    李虹,于海洋,杨海烽,等. 裂缝性非均质致密储层自适应应力敏感性研究[J]. 石油钻探技术,2022,50(3):99–105.

    LI Hong, YU Haiyang, YANG Haifeng, et al. Adaptive stress sensitivity study of fractured heterogeneous tight reservoir[J]. Petroleum Drilling Techniques, 2022, 50(3): 99–105.
    [28]
    端祥刚,安为国,胡志明,等. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学,2017,28(9):1416–1424.

    DUAN Xianggang, AN Weiguo, HU Zhiming, et al. Experimental study on fracture stress sensitivity of Silurian Longmaxi shale formation, Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(9): 1416–1424.
    [29]
    张希胜,杨胜来,张政,等. 应力敏感对高石梯−磨溪区块灯四段气藏开发的影响[J]. 断块油气田,2022,29(5):673–679.

    ZHANG Xisheng, YANG Shenglai, ZHANG Zheng, et al. Influence of stress sensitivity on gas reservoir development of the 4th Member of Dengying Formation in Gaoshit−Moxi Block[J]. Fault-Block Oil & Gas Field, 2022, 29(5): 673–679.
    [30]
    孟召平,卢易新. 高煤阶煤样水力压裂前后应力−渗透率试验研究[J]. 煤炭科学技术,2023,51(1):353–360.

    MENG Zhaoping, LU Yixin. Experimental study on stress-permeability of high rank coal samples before and after hydraulic fractu-ring[J]. Coal Science and Technology, 2023, 51(1): 353–360.
    [31]
    张蕊,白少波,付春苗,等. 固相微粒对裂缝的微观损害机理研究[J]. 辽宁化工,2013,42(8):1019–1022.

    ZHANG Rui, BAI Shaobo, FU Chunmiao, et al. Damage mechanism of solid-phase particles to fractures[J]. Liaoning Chemical Industry, 2013, 42(8): 1019–1022.
    [32]
    付建民,何瑞兵,谭伟雄,等. 太古界潜山花岗片麻岩储层温度敏感性实验研究[J]. 油气地质与采收率,2023,30(3):42–48.

    FU Jianmin, HE Ruibing, TAN Weixiong, et al. Experimental study on temperature sensitivity of granite gneiss reservoirs in Archean buried hills[J]. Petroleum Geology & Recovery Efficiency, 2023, 30(3): 42–48.
  • Related Articles

    [1]CHEN Dongfang, QUAN Bing, XIAO Xinqi, ZHANG Guangyu, CHEN Zhihua. Structure Design and Laboratory Testings of an Axial & Torsional Coupling Impactor[J]. Petroleum Drilling Techniques, 2024, 52(1): 78-83. DOI: 10.11911/syztjs.2023104
    [2]TANG Ming, QI Xin, CAI Peng, WU Liugen. Development and Test of a MonoHole Expandable Casing System[J]. Petroleum Drilling Techniques, 2023, 51(1): 45-50. DOI: 10.11911/syztjs.2022030
    [3]YU Yan, GAO Rui, JIA Yudan, QIAO Lei, ZHOU Wei. Laboratory Tests on the Rock Breaking Effects of Plasma Torch and Suggestions for Field Application[J]. Petroleum Drilling Techniques, 2022, 50(4): 59-63. DOI: 10.11911/syztjs.2022034
    [4]SONG Xianzhi, LI Jiacheng, SHI Yu, XU Fuqiang, ZENG Yijin. Laboratory-Scale Experimental Study on the Injection-Production Performance of a Multilateral-Well Enhanced Geothermal System[J]. Petroleum Drilling Techniques, 2021, 49(1): 81-87. DOI: 10.11911/syztjs.2021019
    [5]YU Meng, TIE Leilei, LI Xiang, LIU Wenhui. Development of Dispersed Copolymer Particle System for Profile Control in Offshore Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 118-122. DOI: 10.11911/syztjs.2020019
    [6]WANG Fangxiang, WANG Ruihe, ZHOU Weidong, LI Luopeng. The Influencing Factors of the Rock Breaking Effect under Particle Water Jet Impacting[J]. Petroleum Drilling Techniques, 2017, 45(2): 40-45. DOI: 10.11911/syztjs.201702007
    [7]FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017
    [8]Zeng Qingdong, Yao Jun. Experiment of Shale Failure Mechanism Based on Particle Flow Theory[J]. Petroleum Drilling Techniques, 2015, 43(1): 33-37. DOI: 10.11911/syztjs.201501006
    [9]Shi Jin, Li Peng, Jia Jianghong. Laboratory Testing of Sand Control Effect for Mesh Type Screen[J]. Petroleum Drilling Techniques, 2013, 41(3): 104-108. DOI: 10.3969/j.issn.1001-0890.2013.03.020
    [10]Yang Bin, Fang Yang, Wang Guozheng, Li Junping. Indoor Test of Heavy Oil Recovery by Gravity Drainage with Solvent[J]. Petroleum Drilling Techniques, 2012, 40(3): 102-106. DOI: 10.3969/j.issn.1001-0890.2012.03.021
  • Cited by

    Periodical cited type(17)

    1. 白云勃,高亮,李婕,王久全,黄伟艇,赵岩,张爱堂,段昱玮,朱华鑫. 破碎地层取心技术研究与应用. 钻探工程. 2025(02): 144-150 .
    2. 杨柳青,陈文才,曾欣. 深层超深层取心技术进展与未来解决方案. 钻采工艺. 2024(02): 113-120 .
    3. 段绪林,熊鸿照,朱绍文,刘书培,卓云,杜世轶. 提高志留系龙马溪组螺杆取心收获率技术. 天然气勘探与开发. 2024(03): 105-110 .
    4. 敬婧. 川渝地区复杂深井多层系多岩性地层取心技术. 天然气勘探与开发. 2024(04): 106-111 .
    5. 谢梦宇. 石油钻井中长筒取心技术研究. 中国新技术新产品. 2023(04): 51-53 .
    6. 王军,段绪林,余星颖,黄渝波,吴云开,李宇,雷立鸥. 筇竹寺组高角度裂缝储层取心复杂处理技术. 天然气勘探与开发. 2023(03): 140-145 .
    7. 王明华,刘维,段绪林,魏彬. 川渝地区深层破碎地层取心工艺优化研究. 钻采工艺. 2022(06): 26-30 .
    8. 王西贵,邹德永,杨立文,高玮,孙少亮,苏洋. 煤层气保温保压保形取心工具研制及现场应用. 石油钻探技术. 2021(03): 94-99 . 本站查看
    9. 王玉玺. 注水开发后期提高常规取芯收获率的方法. 西部探矿工程. 2021(10): 47-49 .
    10. 段绪林,卓云,张杰,熊鸿照,陈锦泉,张运迪. 高渗透易阻卡地层防卡旋转割心工艺——以威207井为例. 天然气勘探与开发. 2021(03): 68-72 .
    11. 曹华庆,冯云春,杨以春,张彦超,王殿学. 松辽盆地南部油气田钻井取心关键技术. 钻探工程. 2021(11): 49-55 .
    12. 石林. 辽河油田D66块火驱开发储层取心技术. 石油钻采工艺. 2019(02): 143-146 .
    13. 曹华庆,龙志平. 苏北盆地戴南组和阜宁组地层取心关键技术. 石油钻探技术. 2019(02): 28-33 . 本站查看
    14. 曹华庆,高长斌. 非常规龙马溪组和牛蹄塘组页岩取心技术. 油气藏评价与开发. 2018(02): 80-84 .
    15. 李伯尧. SY-1井页岩取心钻井工艺. 内蒙古石油化工. 2018(03): 60-63 .
    16. 苏洋,杨立文,刘兴欣. 肯基亚克盐下油田小井眼取心技术. 石油钻采工艺. 2018(01): 58-62 .
    17. 苏洋. 伊拉克格拉芙油田Mishrif储层长筒取心技术. 石油钻探技术. 2017(05): 30-35 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (124) PDF downloads (44) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return