WANG Xu, LIU Dejun, WU Shiwei, et al. Simulation of hydraulic fracture responses based on a magnetotelluric monitoring method [J]. Petroleum Drilling Techniques,2023, 51(6):115-119. DOI: 10.11911/syztjs.2023018
Citation: WANG Xu, LIU Dejun, WU Shiwei, et al. Simulation of hydraulic fracture responses based on a magnetotelluric monitoring method [J]. Petroleum Drilling Techniques,2023, 51(6):115-119. DOI: 10.11911/syztjs.2023018

Simulation of Hydraulic Fracture Responses Based on a Magnetotelluric Monitoring Method

More Information
  • Received Date: November 23, 2022
  • Revised Date: May 05, 2023
  • Accepted Date: June 06, 2023
  • Available Online: June 11, 2023
  • The test scale of conventional electromagnetic hydraulic fracture monitoring methods is limited by the source distance of the instrument, and it is difficult to meet the requirements of longitudinal depth for monitoring in ultra-deep and low-permeability reservoirs. Therefore, based on the magnetotelluric monitoring theory and finite element algorithm, the forward model of vertical well hydraulic fracturing was established according to the actual production of oilfields. By using transitional boundary conditions, the influence of fracture shape and orientation parameter changes on magnetotelluric ground observation was simulated. The simulation results show that the impedance offset can reflect the change in fracture parameters in different ways, and it has an good degree of discrimination on the azimuth angles. The research shows that the magnetotelluric monitoring method is an effective means to monitor fracturing fractures. The research results can provide a reference for the subsequent related researches.

  • [1]
    欧阳伟平,张冕,孙虎,等. 页岩油水平井压裂渗吸驱油数值模拟研究[J]. 石油钻探技术,2021,49(4):143–149.

    OUYANG Weiping, ZHANG Mian, SUN Hu, et al. Numerical simulation of oil displacement by fracturing imbibition in horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143–149.
    [2]
    黄卓. “工厂化” 压裂多裂缝应力干扰与延伸规律研究[J]. 断块油气田,2022,29(4):572–576.

    HUANG Zhuo. Research on stress interference and propagation law of multi-fracture for “factory” fracturing[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 572–576.
    [3]
    周健,曾义金,陈作,等. 青海共和盆地干热岩压裂裂缝测斜仪监测研究[J]. 石油钻探技术,2021,49(1):88–92.

    ZHOU Jian, ZENG Yijin, CHEN Zuo, et al. Research on fracture mapping with surface tiltmeters for “hot dry rock” stimulation in Gonghe Basin, Qinghai[J]. Petroleum Drilling Techniques, 2021, 49(1): 88–92.
    [4]
    YANG Kai, TORRES-VERDÍN C, YILMAZ A E. Detection and quantification of three-dimensional hydraulic fractures with horizontal borehole resistivity measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4605–4615. doi: 10.1109/TGRS.2015.2402656
    [5]
    LI Yang, LIU Dejun, ZHAI Ying, et al. 3-D FEM azimuth forward modeling of hydraulic fractures based on electromagnetic theory[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 246–250. doi: 10.1109/LGRS.2020.2970441
    [6]
    谢媛,刘得军,李彩芳,等. 利用随钻电磁波测井探测直井水力裂缝的正演模拟[J]. 石油钻探技术,2020,48(2):123–129.

    XIE Yuan, LIU Dejun, LI Caifang, et al. Forward modeling in hydraulic fracture detection by means of electromagnetic wave logging while drilling in vertical wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123–129.
    [7]
    ZHANG Liming, QI Ji, LI Lixin, et al. A forward modeling method based on electromagnetic theory to measure the parameters of hydraulic fracture[J]. Fuel, 2019, 251: 466–473. doi: 10.1016/j.fuel.2019.04.075
    [8]
    ZHAI Ying, LIU Dejun, POTTER D K, et al. Characterization of hydraulic fractures with triaxial electromagnetic induction and sector coil rotation measurement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2002511.
    [9]
    吴世伟,刘得军,赵阳,等. 层状介质水力裂缝电磁响应的有限元正演模拟[J]. 石油钻探技术,2022,50(2):132–138.

    WU Shiwei, LIU Dejun, ZHAO Yang, et al. Finite-element forward modeling of electromagnetic response of hydraulic fractures in layered medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132–138.
    [10]
    朱庚雪,刘得军,张颖颖,等. 基于hp-FEM的随钻电磁波测井仪器响应正演分析[J]. 石油钻探技术,2015,43(2):63–70.

    ZHU Gengxue, LIU Dejun, ZHANG Yingying, et al. Forward modeling of responses of an ELWD tool based on hp-FEM[J]. Petroleum Drilling Techniques, 2015, 43(2): 63–70.
    [11]
    张连进,王俊杰,庄小菊,等. 川西北超深层复杂构造气藏裂缝建模方法及开发潜力预测[J]. 特种油气藏,2022,29(3):98–103.

    ZHANG Lianjin, WANG Junjie, ZHUANG Xiaoju, et al. Fracture modeling method and development potential prediction of ultra-deep gas reservoirs with complex structure in Northwestern Sichuan[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 98–103.
    [12]
    周君君. 大地电磁法三维各向异性有限元正演及反演研究[D]. 武汉: 中国地质大学, 2022.

    ZHOU Junjun. Three-dimensional anisotropic finitie element modeling and inversion of magnetotelluric data[D]. Wuhan: China University of Geosciences, 2022.
    [13]
    李袁傲,任政勇,汤井田,等. 基于空气地球分离策略的大地电磁三维正演[J]. 地球物理学报,2022,65(7):2741–2755. doi: 10.6038/cjg2022O0511

    LI Yuanao, REN Zhengyong, TANG Jingtian, et al. An air-earth decomposition formula for three-dimensional magnetotellurics forward modeling[J]. Chinese Journal of Geophysics, 2022, 65(7): 2741–2755. doi: 10.6038/cjg2022O0511
    [14]
    王天意,侯征,杨进,等. 基于迭代有限元法的大地电磁二维正演[J]. 地球物理学进展,2023,38(1):328–336.

    WANG Tianyi, HOU Zheng, YANG Jin, et al. Study of the magnetotelluric 2D forward based on the iterative finite element method[J]. Progress in Geophysics, 2023, 38(1): 328–336.
    [15]
    操聪,赵凌强,党昊,等. 内蒙古狼山山前断裂中段大地电磁探测研究[J]. 大地测量与地球动力学,2022,42(9):975–979.

    CAO Cong, ZHAO Lingqiang, DANG Hao, et al. Study on magnetotelluric detection of the middle section of Langshan piedmont fault in Inner Mongolia[J]. Journal of Geodesy and Geodynamics, 2022, 42(9): 975–979.
    [16]
    薛毛毛,陈清礼,吴娟,等. 地球深部页岩气储层的大地电磁响应特征[J]. 科学技术与工程,2022,22(36):15896–15903. doi: 10.3969/j.issn.1671-1815.2022.36.006

    XUE Maomao, CHEN Qingli, WU Juan, et al. Magnetotelluric response characteristics of shale oil and gas in deep earth[J]. Science Technology and Engineering, 2022, 22(36): 15896–15903. doi: 10.3969/j.issn.1671-1815.2022.36.006
    [17]
    陈理,秦其明,王楠,等. 大地电磁测深正演和反演研究综述[J]. 北京大学学报(自然科学版),2014,50(5):979–984.

    CHEN Li, QIN Qiming, WANG Nan, et al. Review of the forward modeling and inversion in magnetotelluric sounding field[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(5): 979–984.
    [18]
    童孝忠. 大地电磁测深有限单元法正演与混合遗传算法正则化反演研究[D]. 长沙: 中南大学, 2008.

    TONG Xiaozhong. Research of forward using finite element method and regularized inversion using hybrid genetic algorithm in magnetotelluric sounding[D]. Changsha: Central South University, 2008.
    [19]
    PRANATA E, IRAWATI S M, NIASARI S W. Magnetotelluric data analysis using Swift skew, Bahr skew, polar diagram, and phase tensor: a case study in Yellowstone, US[J]. Proceedings of the Pakistan Academy of Sciences: A Physical and Computational Sciences, 2017, 54(3): 311–317.
    [20]
    HUANG Weifeng, WANG Hanming, ZHAN Qiwei, et al. Thin dielectric sheet-based surface integral equation for the scattering simulation of fractures in a layered medium[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7606–7612. doi: 10.1109/TGRS.2019.2914611
    [21]
    ERIKSSON G. Efficient 3D simulation of thin conducting layers of arbitrary thickness[C]//2007 IEEE International Symposium on Electromagnetic Compatibility. Honolulu: IEEE, 2007: 1−6.
  • Related Articles

    [1]SUN Huan, ZHU Mingming, YANG Yongping, WANG Weiliang, WANG Kai, ZHAO Xiangyang. Comprehensive Leakage Control Technology for Shale Gas Wells in Western Margin Thrust Zone of Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 49-54. DOI: 10.11911/syztjs.2024117
    [2]JIN Taiyu. Study on Three-Dimensional Fluid-Solid Coupling Model of Drilling Fluid Leakage in Rough Fracture Network[J]. Petroleum Drilling Techniques, 2024, 52(1): 69-77. DOI: 10.11911/syztjs.2023100
    [3]ZHU Mingming, SUN Huan, SUN Yan, CONG Cheng, SHI Deyi, JIA Jiguo. Loss Circulation Control Technology for Malignant Water Leakage Layer in Longdong Tight Oil Region[J]. Petroleum Drilling Techniques, 2023, 51(6): 50-56. DOI: 10.11911/syztjs.2023003
    [4]HUO Hongbo, LIU Dongdong, TAO Lin, WANG Deying, SONG Chuang, HE Shiming. Integrity Challenges and Countermeasures of the Offshore CCUS Based on CO2-EOR[J]. Petroleum Drilling Techniques, 2023, 51(2): 74-80. DOI: 10.11911/syztjs.2023009
    [5]ZHANG Xiaocheng, HUO Hongbo, LIN Jiayu, LIU Hailong, LI Jin. Integrated Geology-Engineering Early Warning Technologies for Lost Circulation of Fractured Reservoirs in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(6): 72-77. DOI: 10.11911/syztjs.2022025
    [6]WU Junxia, YI Weikai, SUN Peng, LIU Huanle. Integrity Assurance Technologies for Plugged Wells in Wen 23 Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(5): 57-62. DOI: 10.11911/syztjs.2022027
    [7]WANG Jianyun, ZHANG Hongwei, ZOU Shuqiang, LI Mingjun, WANG Peng. Foamed Cement Slurry Cementing Technology for Low-Pressure and Leakage-ProneLayers of the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 25-30. DOI: 10.11911/syztjs.2022075
    [8]KANG Yili, TIAN Guofeng, YOU Lijun, YAN Xiaopeng, XU Chengyuan. Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033
    [9]ZHANG Yu. Application of Direct-Push Storage Logging Technology in the Northwest Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 121-126. DOI: 10.11911/syztjs.2021018
    [10]JIA Lichun, CHEN Mian, TAN Qingming, SUN Zhen, WU Siyue. Key Factors for Inhibiting Fracture Propagation during Leakage Control under Pressure[J]. Petroleum Drilling Techniques, 2016, 44(1): 49-56. DOI: 10.11911/syztjs.201601010
  • Cited by

    Periodical cited type(19)

    1. 王川,陈秋帆,夏勇. 海底泥浆举升钻井系统钻遇天然气水合物时的动态风险分析. 安全与环境学报. 2024(02): 479-487 .
    2. 翟诚,吴迪,秦冬冬. 天然气水合物注热分解诱发储层变形破坏的正交数值模拟研究. 特种油气藏. 2024(02): 112-119 .
    3. 刘芳,冯馨,孙皓宇,张旭辉. 水合物分解中深水基础抗拔性能模型试验研究. 防灾减灾工程学报. 2023(02): 359-365 .
    4. 贺保卫,马志宇,崔海朋,杜鹏. 基于Unity 3D的可燃冰开采环境监测模拟系统设计. 计算机应用与软件. 2023(08): 121-125+154 .
    5. 吴艳辉,代锐,张磊,朱志潜,高禹,刘楷,徐鹏,张雨. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法. 钻井液与完井液. 2023(04): 415-422 .
    6. 赵凯,李润森,冯永存,高伟,张振伟,窦亮彬,毕刚. 非均匀地应力场下水合物储层水平井井周塑性区分布. 中南大学学报(自然科学版). 2022(03): 952-962 .
    7. 王磊,杨进,李莅临,胡志强,柯珂,臧艳彬,孙挺. 深水含水合物地层钻井井口稳定性研究. 岩土工程学报. 2022(12): 2312-2318 .
    8. 王志刚,李小洋,张永彬,尹浩,胡晨,梁金强,黄伟. 海域非成岩天然气水合物储层改造方法分析. 钻探工程. 2021(06): 32-38 .
    9. 马永乐,张勇,刘晓栋,侯岳,杨金龙,宋本岭,刘涛,李荔. 海域天然气水合物低温抑制性钻井液体系. 钻井液与完井液. 2021(05): 544-551+559 .
    10. 王偲,谢文卫,张伟,陈靓,陈浩文. RMR技术在海域天然气水合物钻探中的适应性分析. 探矿工程(岩土钻掘工程). 2020(02): 17-23 .
    11. 史静怡,樊建春,武胜男,李磊. 深水井筒天然气水合物形成预测及风险评价. 油气储运. 2020(09): 988-996 .
    12. 李莅临,杨进,路保平,柯珂,王磊,陈柯锦. 深水水合物试采过程中地层沉降及井口稳定性研究. 石油钻探技术. 2020(05): 61-68 . 本站查看
    13. 李子丰,韩杰. 海底天然气水合物开采的环境安全性探讨. 石油钻探技术. 2019(03): 127-132 . 本站查看
    14. 李庆超,程远方,邵长春. 允许适度坍塌的水合物储层最低钻井液密度. 断块油气田. 2019(05): 657-661 .
    15. 牛洪波,于政廉,孙菁,徐加放. 天然气水合物动力学抑制剂与水分子相互作用研究. 石油钻探技术. 2019(04): 29-34 . 本站查看
    16. 迟咏梅,徐松杰,曹玉廷,董坚. 新型两亲性聚酰胺的合成及性质. 应用化学. 2017(03): 269-275 .
    17. 庞维新,李清平,程艳,王炳明. 水合物堵塞治理工具和方法研究. 石油机械. 2016(03): 68-72 .
    18. 光新军,王敏生. 海洋天然气水合物试采关键技术. 石油钻探技术. 2016(05): 45-51 . 本站查看
    19. 孙小辉,孙宝江,王志远,王金堂. 超临界CO_2钻井井筒水合物形成区域预测. 石油钻探技术. 2015(06): 13-19 . 本站查看

    Other cited types(13)

Catalog

    Article Metrics

    Article views (168) PDF downloads (55) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return