Citation: | HE Chengjiang, JIANG Yingbing, WEN Huan, et al. Key technologies for high-efficiency one-well multi-control development of fractured-vuggy reservoirs in Tahe Oilfield [J]. Petroleum Drilling Techniques,2022, 50(4):37-44. DOI: 10.11911/syztjs.2022077 |
The karst caves are the main oil storage space in the fractured-vuggy carbonate reservoirs in Tahe Oilfield. During multiple rounds of development, the reserve quality and scale of the karst caves keep declining, the benefit risk of the development method of single well producing single cave intensifies with each passing year. For this reason, high-efficiency development technologies of one-well multi-control that can simultaneously exploit multiple fracture-cave bodies were developed on the basis of geology-engineering integration. Specifically, the hierarchical characterization and description technology for fractures and caves was employed to hierarchically demarcate the boundaries between the internal bedrock and the effective fracture-cave bodies in the complex fracture-cave bodies. Due to the differences in the spatial distribution of the fractures and caves in fractured-vuggy reservoirs, a variety of “series” wellbore trajectories as close to the boundaries of the effective fractures and caves as possible were designed to advance geology-engineering integration. Furthermore, a completion technology featuring staged reconstruction and one-time production for fractured-vuggy reservoirs was developed so that one wellbore could connect and exploit production from multiple fracture-cave bodies to further improve the capacity and development benefit of single-well. Field tests of the one-well multi-control technologies were carried out in Tahe Oilfield. During the tests, fracture and cave characterization, trajectory design, and the completion technology were iteratively optimized, which supported the continuous improvement of the reserve production scale and productivity of the one-well multi-control evaluation wells. As a result, the reserve production scale of these wells reached more than 1.5 times that of the vertical wells, and the daily oil production capacity of the oil wells increased by over 10%. The proposed one-well multi-control technologies provide a new developing mode for the fractured-vuggy carbonate reservoirs in TaheOilfield.
[1] |
李阳. 塔河油田碳酸盐岩缝洞型油藏开发理论及方法[J]. 石油学报,2013,34(1):115–121. doi: 10.7623/syxb201301013
LI Yang. The theory and method for development of carbonate fractured-cavity reservoirs in Tahe Oilfield[J]. Acta Petrolei Sinica, 2013, 34(1): 115–121. doi: 10.7623/syxb201301013
|
[2] |
焦方正, 翟晓先. 海相碳酸盐岩非常规大油气田: 塔河油田勘探研究与实践[M]. 北京: 石油工业出版社, 2008: 130-135.
JIAO Fangzheng, ZHAI Xiaoxian. A unconventional large oil and gasfield of marine carbonate rock: exploration research and practice of Tahe Oilfield[M]. Beijing: Petroleum Industry Press, 2008: 130-135.
|
[3] |
焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发,2019,46(3):552–558.
JIAO Fangzheng. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 552–558.
|
[4] |
李阳,金强,钟建华,等. 塔河油田奥陶系岩溶分带及缝洞结构特征[J]. 石油学报,2016,37(3):289–298. doi: 10.7623/syxb201603001
LI Yang, JIN Qiang, ZHONG Jianhua, et al. Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe Oilfieid, Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(3): 289–298. doi: 10.7623/syxb201603001
|
[5] |
胡文革. 塔河碳酸盐岩缝洞型油藏开发技术及攻关方向[J]. 油气藏评价与开发,2020,10(2):1–10. doi: 10.13809/j.cnki.cn32-1825/te.2020.02.001
HU Wenge. Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(2): 1–10. doi: 10.13809/j.cnki.cn32-1825/te.2020.02.001
|
[6] |
李宗杰,王勤聪. 塔北超深层碳酸盐岩储层预测方法和技术[J]. 石油与天然气地质,2002,23(1):35–40. doi: 10.3321/j.issn:0253-9985.2002.01.007
LI Zongjie, WANG Qincong. Method and technique for prediction of super-deep carbonate reservoirs in North Tarim Basin[J]. Oil & Gas Geology, 2002, 23(1): 35–40. doi: 10.3321/j.issn:0253-9985.2002.01.007
|
[7] |
王震,文欢,胡文革. 塔河油田碳酸盐岩缝洞空间位置预测方法研究[J]. 工程地球物理学报,2019,16(4):433–438.
WANG Zhen, WEN Huan, HU Wenge. Study on spatial location prediction method of fractured-vuggy carbonate reservoir in Tahe Oilfield[J]. Chinese Journal of Engineering Geophysics, 2019, 16(4): 433–438.
|
[8] |
黄文松,徐芳,刘成彬,等. 深水盐下湖相碳酸盐岩缝洞地震预测:以巴西桑托斯盆地F油田为例[J]. 石油与天然气地质,2022,43(2):445–455. doi: 10.11743/ogg20220216
HUANG Wensong, XU Fang, LIU Chengbin, et al. Seismic prediction of fractures and vugs in deep-water sub-salt lacustrine carbonates: taking F oilfield in Santos Basin, Brazil as an example[J]. Oil & Gas Geology, 2022, 43(2): 445–455. doi: 10.11743/ogg20220216
|
[9] |
李源,鲁新便,蔡忠贤,等. 塔里木盆地塔河油田岩溶峡谷区海西早期洞穴系统发育模式[J]. 古地理学报,2017,19(2):364–372. doi: 10.7605/gdlxb.2017.02.028
LI Yuan, LU Xinbian, CAI Zhongxian, et al. Development model of Hercynian cave system in karst canyon area of Tahe Oilfield, Tarim Basin[J]. Journal of Palaeogeography, 2017, 19(2): 364–372. doi: 10.7605/gdlxb.2017.02.028
|
[10] |
吕心瑞,孙建芳,邬兴威,等. 缝洞型碳酸盐岩油藏储层结构表征方法:以塔里木盆地塔河S67单元奥陶系油藏为例[J]. 石油与天然气地质,2021,42(3):728–737. doi: 10.11743/ogg20210317
LYU Xinrui, SUN Jianfang, WU Xingwei, et al. Internal architecture characterization of fractured-vuggy carbonate reservoirs: a case study on the Ordovician reservoirs, Tahe Unit S67, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 728–737. doi: 10.11743/ogg20210317
|
[11] |
鲁新便,何成江,邓光校,等. 塔河油田奥陶系油藏喀斯特古河道发育特征描述[J]. 石油实验地质,2014,36(3):268–274. doi: 10.11781/sysydz201403268
LU Xinbian, HE Chengjiang, DENG Guangxiao, et al. Development features of karst ancient river system in Ordovician reservoirs, Tahe Oil Field[J]. Petroleum Geology and Experiment, 2014, 36(3): 268–274. doi: 10.11781/sysydz201403268
|
[12] |
周文,李秀华,金文辉,等. 塔河奥陶系油藏断裂对古岩溶的控制作用[J]. 岩石学报,2011,27(8):2339–2348.
ZHOU Wen, LI Xiuhua, JIN Wenhui, et al. The control action of fault to paleokarst in view of Ordovician reservoir in Tahe Area[J]. Acta Petrologica Sinica, 2011, 27(8): 2339–2348.
|
[13] |
姜应兵,李兴娟. 塔里木盆地塔河油田TH12402井区中下奥陶统古岩溶洞穴发育模式[J]. 古地理学报,2021,23(4):824–836.
JIANG Yingbing, LI Xingjuan. Development model of paleokarst caves in the Middle-Lower Ordovician of TH12402 well area in Tahe Oilfield, Tarim Basin[J]. Journal of Palaeogeography, 2021, 23(4): 824–836.
|
[14] |
孟庆梅,张哲. 塔河油田碳酸盐岩地层钻井问题及对策[J]. 石油钻探技术,1999,27(4):19–20. doi: 10.3969/j.issn.1001-0890.1999.04.007
MENG Qingmei, ZHANG Zhe. Carbonate formation drilling problems and measures in Tahe Oilfield[J]. Petroleum Drilling Techniques, 1999, 27(4): 19–20. doi: 10.3969/j.issn.1001-0890.1999.04.007
|
[15] |
何伟国,唐明,吴柳根. 塔河油田深层侧钻水平井膨胀套管钻井完井技术[J]. 石油钻探技术,2013,41(5):62–66. doi: 10.3969/j.issn.1001-0890.2013.05.012
HE Weiguo, TANG Ming, WU Liugen. Expandable casing drilling and completion technology in deep sidetracked horizontal wells of Tahe Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(5): 62–66. doi: 10.3969/j.issn.1001-0890.2013.05.012
|
[16] |
韩忠艳,耿宇迪,赵文娜. 塔河油田缝洞型碳酸盐岩油藏水平井酸压技术[J]. 石油钻探技术,2009,37(6):94–97. doi: 10.3969/j.issn.1001-0890.2009.06.023
HAN Zhongyan, GENG Yudi, ZHAO Wenna. Fractured-vuggy carbonate reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2009, 37(6): 94–97. doi: 10.3969/j.issn.1001-0890.2009.06.023
|
[17] |
房好青,赵兵,汪文智,等. 塔河油田靶向压裂预制缝转向技术模拟研究[J]. 石油钻探技术,2019,47(5):97–103. doi: 10.11911/syztjs.2019048
FANG Haoqing, ZHAO Bing, WANG Wenzhi, et al. Simulation study on the range of diversion in targeted fracturing of prefabricated fractures in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 97–103. doi: 10.11911/syztjs.2019048
|
[18] |
周丹,熊旭东,何军榜,等. 低渗透储层多级转向压裂技术[J]. 石油钻探技术,2020,48(1):85–89. doi: 10.11911/syztjs.2019077
ZHOU Dan, XIONG Xudong, HE Junbang, et al. Multi-stage deflective fracturing technology for low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85–89. doi: 10.11911/syztjs.2019077
|
[19] |
李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术,2020,48(2):88–92. doi: 10.11911/syztjs.2020018
LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92. doi: 10.11911/syztjs.2020018
|
[20] |
张永春. 泾河油田致密低渗油藏水平井重复压裂技术[J]. 断块油气田,2021,28(5):711–715.
ZHANG Yongchun. Horizontal well re-fracturing technology in tight and low permeability reservoir of Jinghe Oilfield[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 711–715.
|
[21] |
滕卫卫,李想. 底水火山岩油藏水平井优化设计[J]. 特种油气藏,2021,28(5):120–125. doi: 10.3969/j.issn.1006-6535.2021.05.017
TENG Weiwei, LI Xiang. Optimal design of horizontal wells in volcanic hydrocarbon reservoir with bottom water[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 120–125. doi: 10.3969/j.issn.1006-6535.2021.05.017
|
[22] |
虞绍永. 基于早期返排历史数据的水平井分段压裂效果评价方法[J]. 石油钻探技术,2021,49(6):1–7. doi: 10.11911/syztjs.2021136
YU Shaoyong. Post-frac evaluation of multi-stage fracturing on horizontal wells based on early flowback history[J]. Petroleum Drilling Techniques, 2021, 49(6): 1–7. doi: 10.11911/syztjs.2021136
|
[23] |
贺甲元,程洪,向红,等. 塔河油田碳酸盐岩储层暂堵转向压裂排量优化[J]. 石油钻采工艺,2021,43(2):233–238. doi: 10.13639/j.odpt.2021.02.015
HE Jiayuan, CHENG Hong, XIANG Hong, et al. Optimizing the displacement of temporary plugging and diversion fracturing of the carbonate reservoirs in Tahe Oilfield[J]. Oil Drilling & Production Technology, 2021, 43(2): 233–238. doi: 10.13639/j.odpt.2021.02.015
|
[24] |
赵海洋,刘志远,唐旭海,等. 缝洞型碳酸盐岩储层循缝找洞压裂技术[J]. 石油钻采工艺,2021,43(1):89–96.
ZHAO Haiyang, LIU Zhiyuan, TANG Xuhai, et al. Fracturing technology of searching for vugs along fractures in fractured-vuggy carbonate reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(1): 89–96.
|