WU Shiwei, LIU Dejun, ZHAO Yang, WANG Xu, FENG Xue, LI Yang. Finite-Element Forward Modeling of Electromagnetic Response of Hydraulic Fractures in Layered Medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132-138. DOI: 10.11911/syztjs.2022060
Citation: WU Shiwei, LIU Dejun, ZHAO Yang, WANG Xu, FENG Xue, LI Yang. Finite-Element Forward Modeling of Electromagnetic Response of Hydraulic Fractures in Layered Medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132-138. DOI: 10.11911/syztjs.2022060

Finite-Element Forward Modeling of Electromagnetic Response of Hydraulic Fractures in Layered Medium

More Information
  • Received Date: June 02, 2021
  • Revised Date: February 17, 2022
  • Available Online: March 09, 2022
  • For better understanding of response characteristics of electromagnetic logging instruments in fractures in multi-layer medium, based on the low-frequency electromagnetic field theory, fracture models of a single-layer medium formation and a five-layer medium formation were built with finite-element software, respectively. On this basis, forward modeling of the induced electromotive force in the receiving coil in hydraulic fractures in the layered medium was carried out. The results showed that the induced electromotive force curve changed significantly at the fracture position. When the fracture is symmetrical and the angle between the fracture and the borehole is from 25° to 90°, the smaller the angle, the more tortuous the fracture response signal, which was exactly opposite to the case when the angle was between 90° and 155°. If the fracture was asymmetrical, the larger the widening angle, the more obvious the asymmetry of fracture response signal under the condition of multi-layer medium when the widening angle was in the range of 30–150°. The research shows that a multi-layer medium has influence on the fracture response curve, and the research results provide a theoretical basis for the detection and evaluation of hydraulic fractures in horizontal wells.
  • [1]
    霍玉雁,岳喜洲,孙建孟. 测井资料在压裂设计中的应用[J]. 测井技术,2008,32(5):446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014

    HUO Yuyan, YUE Xizhou, SUN Jianmeng. Application of logging data in fracturing design[J]. Well Logging Technology, 2008, 32(5): 446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014
    [2]
    REN Yi, HUANG Weifeng, LIU Qinghuo, et al. Accurate fracture scattering simulation by thin dielectric sheet-based surface integral equation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1448–1451. doi: 10.1109/LGRS.2016.2591079
    [3]
    DAI Junwen, FANG Yuan, ZHOU Jianyang, et al. Analysis of electromagnetic induction for hydraulic fracture diagnostics in open and cased boreholes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 264–271. doi: 10.1109/TGRS.2017.2746346
    [4]
    YAN Liangjun, CHEN Xiaoxiong, TANG Hao, et al. Continuous TDEM for monitoring shale hydraulic fracturing[J]. Applied Geophysics, 2018, 15(1): 26–34. doi: 10.1007/s11770-018-0661-1
    [5]
    ZHANG Liming, QI Ji, LI Lixin, et al. A forward modeling method based on electromagnetic theory to measure the parameters of hydraulic fracture[J]. Fuel, 2019, 251: 466–473. doi: 10.1016/j.fuel.2019.04.075
    [6]
    YANG Kai, TORRES-VERDÍN C, YILMAZ A E. Detection and quantification of three-dimensional hydraulic fractures with horizontal borehole resistivity measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4605–4615. doi: 10.1109/TGRS.2015.2402656
    [7]
    HUANG Weifeng, WANG Hanming, ZHAN Qiwei, et al. Thin dielectric sheet-based surface integral equation for the scattering simulation of fractures in a layered medium[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7606–7612. doi: 10.1109/TGRS.2019.2914611
    [8]
    LI Yang, LIU Dejun, ZHAI Ying, et al. 3-D FEM azimuth forward modeling of hydraulic fractures based on electromagnetic theory[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 246–250. doi: 10.1109/LGRS.2020.2970441
    [9]
    仵杰,任垚煜,贺秋利,等. 电磁远探测仪器参数设计[J]. 西安石油大学学报(自然科学版),2021,36(1):105–112.

    WU Jie, REN Yaoyu, HE Qiuli, et al. Parameter design of remote detection tool with electromagnetic method[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2021, 36(1): 105–112.
    [10]
    冯硕,刘得军,张颖颖,等. 基于COMSOL的井地电阻率正演研究[J]. 断块油气田,2013,20(5):589–592.

    FENG Shuo, LIU Dejun, ZHANG Yingying, et al. Study on borehole-to-ground resistivity forward modeling based on COMSOL[J]. Fault-Block Oil & Gas Field, 2013, 20(5): 589–592.
    [11]
    ANDERSON B, GIANZERO S. Mathematical theory for the fields due to a finite a. c. coil in an infinitely thick bed with an arbitrary number of co-axial layers[J]. The Log Analyst, 1984, 25(2): SPWLA–1984-vXXVn2a3.
    [12]
    黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132

    HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
    [13]
    李辉,刘得军,刘彦昌,等. 自适应hp-FEM在随钻电阻率测井仪器响应数值模拟中的应用[J]. 地球物理学报,2012,55(8):2787–2797. doi: 10.6038/j.issn.0001-5733.2012.08.030

    LI Hui, LIU Dejun, LIU Yanchang, et al. Application of self-adaptive hp-FEM in numerical simulation of resistivity logging-while-drilling[J]. Chinese Journal of Geophysics, 2012, 55(8): 2787–2797. doi: 10.6038/j.issn.0001-5733.2012.08.030
    [14]
    李辉,刘得军,刘悦,等. 基于自适应hp-FEM的过套管电阻率测井仪器响应数值模拟[J]. 地球物理学进展,2013,28(6):3243–3253. doi: 10.6038/pg20130652

    LI Hui, LIU Dejun, LIU Yue, et al. Numerical simulation of TCRT based on self-adaptive hp-FEM[J]. Progress in Geophysics, 2013, 28(6): 3243–3253. doi: 10.6038/pg20130652
    [15]
    谢媛,刘得军,李彩芳,等. 利用随钻电磁波测井探测直井水力裂缝的正演模拟[J]. 石油钻探技术,2020,48(2):123–129. doi: 10.11911/syztjs.2019133

    XIE Yuan, LIU Dejun, LI Caifang, et al. Forward modeling in hydraulic fracture detection by means of electromagnetic wave logging while drilling in vertical wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123–129. doi: 10.11911/syztjs.2019133
    [16]
    朱庚雪,刘得军,张颖颖,等. 基于hp-FEM的随钻电磁波测井仪器响应正演分析[J]. 石油钻探技术,2015,43(2):63–70.

    ZHU Gengxue, LIU Dejun, ZHANG Yingying, et al. Forward modeling of responses of an ELWD tool based on hp-FEM[J]. Petroleum Drilling Techniques, 2015, 43(2): 63–70.
    [17]
    LIU Dejun, MA Zhonghua, XING Xiaonan, et al. Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM[J]. Applied Geophysics, 2013, 10(1): 97–108. doi: 10.1007/s11770-013-0368-2
    [18]
    SHARMA M M, BASU S. Fracture diagnosis using electromagnetic methods: United States Patent Application 20160282502[P]. 2016-09-29.
    [19]
    PARDO D, TORRES-VERDÍN C, PASZYNSKI M. Numerical simulation of 3D EM borehole measurements using an hp-adaptive goal-oriented finite-element formulation[M]//HARDAGE B. SEG Technical Program Expanded Abstracts 2007. Tulsa: Society of Exploration Geophysicists, 2007: 653–657.
    [20]
    杨震,于其蛟,马清明. 基于拟牛顿法的随钻方位电磁波电阻率仪器响应实时反演与现场试验[J]. 石油钻探技术,2020,48(3):120–126. doi: 10.11911/syztjs.2020025

    YANG Zhen, YU Qijiao, MA Qingming. Real time inversion and field test of LWD azimuthal electromagnetic waves based on quasi-newton method[J]. Petroleum Drilling Techniques, 2020, 48(3): 120–126. doi: 10.11911/syztjs.2020025
    [21]
    孟昆,刘迪仁,徐观佑,等. 泥页岩储层水平井随钻电磁波电阻率测井响应特性[J]. 断块油气田,2018,25(4):464–468.

    MENG Kun, LIU Diren, XU Guanyou, et al. Response characteristics of electromagnetic wave resistivity LWD tool of muddy shale fractured reservoir in horizontal well[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 464–468.
  • Related Articles

    [1]WANG Xu, LIU Dejun, WU Shiwei, LI Yang, ZHAI Ying. Simulation of Hydraulic Fracture Responses Based on a Magnetotelluric Monitoring Method[J]. Petroleum Drilling Techniques, 2023, 51(6): 115-119. DOI: 10.11911/syztjs.2023018
    [2]MENG Qingwei, JIANG Tianjie, LIU Yongjing, YANG Jie, WANG Yuezhi. Calculation and Correction of Azimuth Errors Based on Finite Element Analysis[J]. Petroleum Drilling Techniques, 2022, 50(3): 66-73. DOI: 10.11911/syztjs.2022031
    [3]XIE Yuan, LIU Dejun, LI Caifang, ZHAI Ying, SUN Yu. Forward Modeling in Hydraulic Fracture Detection by Means of Electromagnetic Wave Logging While Drilling in Vertical Wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123-129. DOI: 10.11911/syztjs.2019133
    [4]XIE Han, KUANG Yuchun, QIN Chao. The Finite Element Simulation and Test of Rock Breaking by Non-Planar PDC Cutting Cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73. DOI: 10.11911/syztjs.2019043
    [5]SUN Xiaofeng, ZHANG Kebo, YUAN Yujin, NI Xiaodong, CHEN Ye. The Establishment and Correction of a Prediction Model for the Repose Angle of a Cuttings Bed in Highly Deviated Well Interval[J]. Petroleum Drilling Techniques, 2019, 47(4): 22-28. DOI: 10.11911/syztjs.2019039
    [6]LIU Xiushan. Principal Normal Angle of Borehole Trajectory and Its Equation[J]. Petroleum Drilling Techniques, 2019, 47(3): 103-106. DOI: 10.11911/syztjs.2019052
    [7]NI Xiaowei, XU Guanyou, AO Xuanfeng, FENG Jiaming, AI Lin, LIU Diren. The Influencing Factors on the Polarizing Angle of Array Laterolog Curves[J]. Petroleum Drilling Techniques, 2018, 46(2): 120-126. DOI: 10.11911/syztjs.2018017
    [8]Liu Xiuquan, Chen Guoming, Song Qiang, Chang Yuanjiang, Xu Liangbin. Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method[J]. Petroleum Drilling Techniques, 2015, 43(4): 43-47. DOI: 10.11911/syztjs.201504008
    [9]Yu Yang, Zhou Wei, Liu Xiaomin, Fu Jianhong, Zheng Jiangli. Finite Element Numerical Simulation of Expansive Force on Solid Expandable Tube and Its Application[J]. Petroleum Drilling Techniques, 2013, 41(5): 107-110. DOI: 10.3969/j.issn.1001-0890.2013.05.021
    [10]Turbodrill Seal Ring Temperature Finite Element Analysis[J]. Petroleum Drilling Techniques, 2011, 39(2): 112-116. DOI: 10.3969/j.issn.1001-0890.2011.02.023
  • Cited by

    Periodical cited type(7)

    1. 魏康健,秦臻,苏可嘉,王港,黄易聪,张昕熠,孟令义. 裂缝储层水平井双感应测井响应特征分析与认识. 江西科学. 2024(02): 271-276 .
    2. 夏毅锐,苏洪波,王紫潇. 有限元分析在含锰金属蒙皮铆接结构疲劳断裂性能中的研究. 中国锰业. 2024(02): 79-83+95 .
    3. 秦文娟,康正明,张意,仵杰,倪卫宁. 模块化随钻电磁波测井仪器结构对测量信号的影响. 石油钻探技术. 2024(03): 137-145 . 本站查看
    4. 胡斌. 瞬变电磁法在煤矿超前地质勘查中的应用. 能源与环保. 2024(06): 70-75 .
    5. 孟晋,刘得军,翟颖,李洋,刘思彤,彭娜. 基于电磁方法的水力压裂裂缝探测技术研究进展. 石油地球物理勘探. 2023(06): 1508-1521 .
    6. 王旭,刘得军,吴世伟,李洋,翟颖. 基于大地电磁监测方法的水力裂缝响应模拟. 石油钻探技术. 2023(06): 115-119 . 本站查看
    7. 吴世伟,刘得军,翟颖,李洋,王旭. 利用倾斜线圈探测水力裂缝的正演模拟. 地球物理学进展. 2022(06): 2449-2459 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (334) PDF downloads (54) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return