Citation: | ZOU Longqing, HE Huaiyin, YANG Yadong, et al. Numerical simulation study on the migration characteristics of ball sealers in horizontal shale gas wells [J]. Petroleum Drilling Techniques,2023, 51(5):156-166. DOI: 10.11911/syztjs.2023093 |
Temporary plugging fracturing of horizontal wells is the key to improving the stimulation results of unconventional reservoirs. The accurate prediction of the migration and plugging characteristics of the ball sealer in horizontal wells plays a prominent role in the successful implementation of the temporary plugging and fracturing of horizontal wells. Therefore, it is necessary to employ numerical simulation methods to simulate the migration and plugging characteristics of ball sealer in horizontal wells. Since the coupled CFD-DEM model can treat the ball sealer as a rotating sphere and accomplish two-way coupling between particle and fluid, a numerical model of wellbore temporary plugging in horizontal shale gas wells was established based on the CFD-DEM coupling method to analyze the influence of ball sealer diameter, fracturing pump rate, and ball sealer density on the migration and sealing behavior of ball sealers. The results showed that for a casing diameter of ϕ139.7 mm, with a single-cluster and a 8-perforation spiral distribution, the effect of wellbore temporary plugging was the best when the ratio of perforation diameter to ball sealer diameter was about 0.97. The sealing efficiency of the ball sealer first increased and then decreased with the increase of pump rate. When the pump rate was less than 6 m3/min, the sealing efficiency of the ball sealer increased with the increase in the pump rate. When the pump rate was 4–7 m3/min, the sealing efficiency of the ball sealer was higher. The low-density ball sealer had the highest sealing efficiency, and the high-density ball sealer had the lowest sealing efficiency. In addition, the ball sealer was most likely to seal the perforation in the second half interval of the perforation cluster or the first perforation. The temporary plugging model of horizontal shale gas wells based on CFD-DEM coupling can provide a visualization of the migration process of the ball sealer in the horizontal section and predict the migration speed of the ball sealer and the position of the sealed perforation, which provides a guideline for the temporary plugging fracturing design and field implementation in horizontal wells.
[1] |
雷群,杨战伟,翁定为,等. 超深裂缝性致密储集层提高缝控改造体积技术:以库车山前碎屑岩储集层为例[J]. 石油勘探与开发,2022,49(5):1012–1024.
LEI Qun, YANG Zhanwei, WENG Dingwei, et al. Techniques for improving fracture-controlled stimulated reservoir volume in ultra-deep fractured tight reservoirs: a case study of Kuqa piedmont clastic reservoirs, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(5): 1012–1024.
|
[2] |
蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023,51(4):184–191.
JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184–191.
|
[3] |
冯发勇,梁志彬,姚昌宇. 东胜气田锦30井区变黏压裂液体积压裂技术[J]. 石油钻采工艺,2022,44(6):740–745.
FENG Fayong, LIANG Zhibin, YAO Changyu. SRV-oriented fracturing with viscosity-variable fracturing fluids in the Jin-30 Well District, Dongsheng Gas Field[J]. Oil Drilling & Production Technology, 2022, 44(6): 740–745.
|
[4] |
郑新权,何春明,杨能宇,等. 非常规油气藏体积压裂2.0工艺及发展建议[J]. 石油科技论坛,2022,41(3):1–9.
ZHENG Xinquan, HE Chunming, YANG Nengyu, et al. Volumetric fracturing 2.0 process for unconventional oil and gas reservoirs and and R&D suggestions[J]. Petroleum Science and Technology Forum, 2022, 41(3): 1–9.
|
[5] |
熊春明,石阳,周福建,等. 深层油气藏暂堵转向高效改造增产技术及应用[J]. 石油勘探与开发,2018,45(5):888–893.
XIONG Chunming, SHI Yang, ZHOU Fujian, et al. High efficiency reservoir stimulation based on temporary plugging and diverting for deep reservoirs[J]. Petroleum Exploration and Development, 2018, 45(5): 888–893.
|
[6] |
郭建春,赵峰,詹立,等. 四川盆地页岩气储层暂堵转向压裂技术进展及发展建议[J]. 石油钻探技术,2023,51(4):170–183.
GUO Jianchun, ZHAO Feng, ZHAN Li, et al. Recent advances and development suggestions of temporary plugging and diverting fracturing technology for shale gas reservoirs in the Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170–183.
|
[7] |
王磊,盛志民,赵忠祥,等. 吉木萨尔页岩油水平井大段多簇压裂技术[J]. 石油钻探技术,2021,49(4):106–111.
WANG Lei, SHENG Zhimin, ZHAO Zhongxiang, et al. Large-section and multi-cluster fracturing technology for horizontal wells in the Jimsar shale oil reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 106–111.
|
[8] |
杨恒林,吕嘉昕,谭鹏,等. 基于三维扫描技术的页岩暂堵压裂物理模拟实验[J]. 断块油气田,2022,29(1):118–123.
YANG Henglin, LYU Jiaxin, TAN Peng, et al. Physical simulation experiment on shale temporary plugging and fracturing based on 3D scanning technology[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 118–123.
|
[9] |
NOZAKI M, ZHU D, HILL A D D. Experimental and field data analyses of ball-sealer diversion[J]. SPE Production & Operations, 2013, 28(3): 286–295.
|
[10] |
许江文,张谷畅,李建民,等. 暂堵剂形状对裂缝封堵影响规律的实验研究[J]. 断块油气田,2022,29(6):842–847.
XU Jiangwen,ZHANG Guchang,LI Jianmin,et al. Experimental study on influence law of temporary plugging agent shape on fracture plugging[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 842–847.
|
[11] |
路智勇. 转向压裂用暂堵剂研究进展与展望[J]. 科学技术与工程,2020,20(31):12691–12701.
LU Zhiyong. Progress and prospect study on temporary plugging agent for diverting fracturing[J]. Science Technology and Engineering, 2020, 20(31): 12691–12701.
|
[12] |
肖晖,李洁,曾俊. 投球压裂堵塞球运动方程研究[J]. 西南石油大学学报(自然科学版),2011,33(5):162–167.
XIAO Hui, LI Jie, ZENG Jun. Ball motion equation in the ball sealer fracturing[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2011, 33(5): 162–167.
|
[13] |
蔡华,张光波,杨阳,等. 投球暂堵压裂工艺在煤层气井的应用[J]. 中国煤层气,2020,17(6):17–20.
CAI Hua, ZHANG Guangbo, YANG Yang, et al. Application of ball temporary plugging fracturing technology in coalbed methane wells[J]. China Coalbed Methane, 2020, 17(6): 17–20.
|
[14] |
刘明明, 马收, 刘立之, 等. 页岩气水平井压裂施工中暂堵球封堵效果研究[J]. 钻采工艺, 2020, 43(6):44−48.
LIU Mingming, MA Shou, LIU Lizhi, et al. Study on the effect of temporary plugging ball in fracturing of horizontal shale gas well[J]. Drilling & Production Technology, 2020, 43(6): 44−48.
|
[15] |
郑志兵. 暂堵球封堵效果影响因素分析及其在Z油田的应用[J]. 石化技术,2017,24(2):55–56.
ZHENG Zhibing. Analysis on influencing factors of plugging effect and its application in Z Oilfield[J]. Petrochemical Industry Technology, 2017, 24(2): 55–56.
|
[16] |
李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术,2020,48(2):88–92.
LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92.
|
[17] |
夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96.
XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96.
|
[18] |
周丹,熊旭东,何军榜,等. 低渗透储层多级转向压裂技术[J]. 石油钻探技术,2020,48(1):85–89.
ZHOU Dan, XIONG Xudong, HE Junbang, et al. Multi-stage deflective fracturing technology for low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85–89.
|
[19] |
TAN Xuebao, WENG Xiaowei, AHMED T K, et al. An improved ball sealer model for well stimulation[R]. SPE 189573, 2018.
|
[20] |
LI Xiaohe, CHEN Zhongmin, CHAUDHARY S, et al. An integrated transport model for ball-sealer diversion in vertical and horizontal wells[R]. SPE 96339, 2005.
|
[21] |
张峰,荣莽,许明标. 页岩气水平井暂堵球运移坐封机理[J]. 科学技术与工程,2020,20(6):2202–2208.
ZHANG Feng, RONG Mang, XU Mingbiao. Mechanism of temporary blocking ball’s transportation and blocking in shale gas horizontal wells[J]. Science Technology and Engineering, 2020, 20(6): 2202–2208.
|
[22] |
张雄,耿宇迪,焦克波,等. 塔河油田碳酸盐岩油藏水平井暂堵分段酸压技术[J]. 石油钻探技术,2016,44(4):82–87.
ZHANG Xiong, GENG Yudi, JIAO Kebo, et al. The technology of multi-stage acid fracturing in horizontal well for carbonate reservoir by temporary plugging ways in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(4): 82–87.
|
[23] |
BROWN R W, NEILL G H, LOPER R G. Factors Influencing optimum ball sealer performance[J]. Journal of Petroleum Technology, 1963, 15(4): 450–454. doi: 10.2118/553-PA
|
[24] |
周彤,陈铭,张士诚,等. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化[J]. 天然气工业,2020,40(3):82–91.
ZHOU Tong, CHEN Ming, ZHANG Shicheng, et al. Simulation of fracture propagation and optimization of ball-sealer in-stage diversion under the effect of heterogeneous stress field in a horizontal well[J]. Natural Gas Industry, 2020, 40(3): 82–91.
|
[25] |
达引朋,李建辉,王飞,等. 长庆油田特低渗透油藏中高含水井调堵压裂技术[J]. 石油钻探技术,2022,50(3):74–79.
DA Yinpeng, LI Jianhui, WANG Fei, et al. Plugging and fracturing technology for high water cut wells in ultra-low permeability reservoirs of Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(3): 74–79.
|
[26] |
CHENG Wan, LU Chunhua, FENG Guanxiong, et al. Ball sealer tracking and seating of temporary plugging fracturing technology in the perforated casing of a horizontal well[J]. Energy Exploration & Exploitation, 2021, 39(6): 2045–2061.
|
[27] |
OOKAWARA S, AGRAWAL M, STREET D, et al. Quasi-direct numerical simulation of lift force-induced particle separation in a curved microchannel by use of a macroscopic particle model[J]. Chemical Engineering Science, 2007, 62(9):2454-2465.
|
[28] |
SORIA J, GAUTHIER D, FLAMANt G, et al. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD[J]. Waste Management, 2015, 43(9):176-187.
|
[29] |
吴宏杰,肖博,张旭东. 页岩气井暂堵重复压裂工艺技术研究及应用[J]. 石油化工应用,2020,39(9):53–56.
WU Hongjie, XIAO Bo, ZHANG Xudong. Research and application of temporary plugging and re-fracturing technology for shale gas wells[J]. Petrochemical Application, 2020, 39(9): 53–56.
|
[30] |
吕瑞华,刘奔,安琳. 水平井转向压裂用暂堵球运移封堵规律研究[J]. 石油机械,2020,48(7):117–122.
LYU Ruihua, LIU Ben, AN Lin. Study on the migration and plugging Laws of temporary plugging ball for divert fracturing in horizontal wells[J]. China Petroleum Machinery, 2020, 48(7): 117–122.
|
[31] |
廖仕孟,桑宇,宋毅,等. 页岩气水平井套管变形影响段分段压裂工艺研究及现场试验[J]. 天然气工业,2017,37(7):40–45.
LIAO Shimeng, SANG Yu, SONG Yi, et al. Research and field-tests of staged fracturing technology for casing deformation section in horizontal shale gas wells[J]. Natural Gas Industry, 2017, 37(7): 40–45.
|
[32] |
卢修峰,刘凤琴. 投球分压的理论验证及实例分析[J]. 石油钻采工艺,1994,16(3):57–62. doi: 10.13639/j.odpt.1994.03.014
LU Xiufeng, LIU Fengqin. The theory verification and examples analysis of steering ball separate-layer fracturing[J]. Oil Drilling & Production Technology, 1994, 16(3): 57–62. doi: 10.13639/j.odpt.1994.03.014
|
1. |
李绍鹏,李常兴,周鹏,蓝宝锋,蔡灿,钟涛. 页岩气水平井暂堵坐封机制与可控暂堵压裂工艺. 断块油气田. 2024(03): 432-438 .
![]() | |
2. |
何乐,朱炬辉,梁兴,赵智勇,管彬,安树杰. 基于管外光纤监测的页岩气水平井多簇压裂效果评价. 石油钻探技术. 2024(04): 110-117 .
![]() | |
3. |
王雷,叶荣俊,陈德瑞,许文俊,张健鹏. 超深高温高盐油藏膨胀乳液调驱技术研究与应用. 特种油气藏. 2024(06): 130-136 .
![]() | |
4. |
李永明,马健,栗铁峰,孙鹏. 页岩水平井分段多簇缝口暂堵参数优化——以川南下寒武统筇竹寺组页岩为例. 西南石油大学学报(自然科学版). 2024(06): 137-145 .
![]() | |
5. |
刘罗云,李扬,王迪. 水平井筒暂堵球运移规律实验及效果评价. 东北石油大学学报. 2023(06): 55-66+128-129 .
![]() |