Citation: | LIU Yaowen, MING Yue, ZHANG Xudong, BIAN Xiaobing, ZHANG Chi, WANG Haitao. “Casing in Casing” Mechanical Isolation Refracturing Technology in Fuling Shale Gas Wells[J]. Petroleum Drilling Techniques, 2022, 50(3): 86-91. DOI: 10.11911/syztjs.2022010 |
The application of temporary plugging and diverting refracturing in Fuling Shale Gas Field brought on technical difficulties accompanied by poor production increase. To solve this problem, this paper analyzed principles and characteristics of technologies used in shale gas wells abroad. They included temporary plugging and diverting refracturing, and mechanical isolation refracturing. What was found was that that mechanical isolation could completely block the perforations and precisely control fracture initiation of hydraulic refracturing. From that, the “casing in casing” mechanical isolation refracturing technology took shape. In Fuling Shale Gas Field, this technology was tested with a casing (outer diameter of 88.9 mm) inserted into the other one (inner diameter of 115.0 mm) where in a new and closed well casing was formed. In addition, refracturing technologies targeted for different residual oil distribution in the reservoir were developed through studies. In the original well casing, attention should be paid to exploring the residual oil among fractures in the stimulated well section. At the same time,emphasis should target the poorly stimulated sections, to see how to recover the flow conductivity of the fractures. After implementing that technology in Well JYAHF, the recoverable reserve for a single well increased by 0.36×108 m3, and the recovery efficiency increased by 4.8%. The study shows that the “casing in casing” mechanical isolation refracturing technology can significantly improve the result of stimulation and provide technical support for long-term and efficient shale gas field development in China.
[1] |
任岚,黄静,赵金洲,等. 页岩气水平井重复压裂产能数值模拟[J]. 天然气勘探与开发,2019,42(2):100–106.
REN Lan, HUANG Jing, ZHAO Jinzhou, et al. Numerical simulation on productivity when shale-gas horizontal-well refracturing[J]. Natural Gas Exploration and Development, 2019, 42(2): 100–106.
|
[2] |
夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96. doi: 10.11911/syztjs.2020065
XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96. doi: 10.11911/syztjs.2020065
|
[3] |
王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质,2014,35(3):425–430. doi: 10.11743/ogg201418
WANG Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling Area[J]. Oil & Gas Geology, 2014, 35(3): 425–430. doi: 10.11743/ogg201418
|
[4] |
肖博,李双明,蒋廷学,等. 页岩气井暂堵重复压裂技术研究进展[J]. 科学技术与工程,2020,20(24):9707–9715. doi: 10.3969/j.issn.1671-1815.2020.24.004
XIAO Bo, LI Shuangming, JIANG Tingxue, et al. Research progress on temporary-plugging refracturing technology for shale gas wells[J]. Science Technology and Engineering, 2020, 20(24): 9707–9715. doi: 10.3969/j.issn.1671-1815.2020.24.004
|
[5] |
张永春. 泾河油田致密低渗油藏水平井重复压裂技术[J]. 断块油气田,2021,28(5):711–715.
ZHANG Yongchun. Horizontal well re-fracturing technology in tight and low permeability reservoir of Jinghe Oilfield[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 711–715.
|
[6] |
蔡卓林,赵续荣,南荣丽,等. 暂堵转向结合高排量体积重复压裂技术[J]. 断块油气田,2020,27(5):661–665.
CAI Zhuolin, ZHAO Xurong, NAN Rongli, et al. Volume re-fracturing technology of temporary plugging and diverting with high displacement[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 661–665.
|
[7] |
崔静,高东伟,毕文韬,等. 页岩气井重复压裂选井评价模型研究及应用[J]. 岩性油气藏,2018,30(6):145–150. doi: 10.12108/yxyqc.20180618
CUI Jing, GAO Dongwei, BI Wentao, et al. Refracturing selection evaluation model for shale gas wells and its application[J]. Lithologic Reservoirs, 2018, 30(6): 145–150. doi: 10.12108/yxyqc.20180618
|
[8] |
王峻源,徐太平,周京伟,等. 高强度长效暂堵剂在水平井重复压裂上的应用[J]. 化工设计通讯,2020,46(8):83–85. doi: 10.3969/j.issn.1003-6490.2020.08.057
WANG Junyuan, XU Taiping, ZHOU Jingwei, et al. Application of a high-strength and long-acting temporary plugging agent in horizontal well re-fracturing[J]. Chemical Engineering Design Communications, 2020, 46(8): 83–85. doi: 10.3969/j.issn.1003-6490.2020.08.057
|
[9] |
何海波. 致密油水平井缝网增能重复压裂技术实践[J]. 特种油气藏,2018,25(4):170–174. doi: 10.3969/j.issn.1006-6535.2018.04.034
HE Haibo. Practice of re-fracturing with network energization for horizontal well in tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 170–174. doi: 10.3969/j.issn.1006-6535.2018.04.034
|
[10] |
周丹,熊旭东,何军榜,等. 低渗透储层多级转向压裂技术[J]. 石油钻探技术,2020,48(1):85–89. doi: 10.11911/syztjs.2019077
ZHOU Dan, XIONG Xudong, HE Junbang, et al. Multi-stage deflective fracturing technology for low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85–89. doi: 10.11911/syztjs.2019077
|
[11] |
马俊修,兰正凯,王丽荣,等. 有效改造体积压裂效果评价方法及应用[J]. 特种油气藏,2021,28(5):126–133. doi: 10.3969/j.issn.1006-6535.2021.05.018
MA Junxiu, LAN Zhengkai, WANG Lirong, et al. Evaluation method and application of ESRV fracturing effect[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 126–133. doi: 10.3969/j.issn.1006-6535.2021.05.018
|
[12] |
李彦超,何昀宾,肖剑锋,等. 页岩气水平井重复压裂层段优选与效果评估[J]. 天然气工业,2018,38(7):59–64. doi: 10.3787/j.issn.1000-0976.2018.07.008
LI Yanchao, HE Yunbin, XIAO Jianfeng, et al. Optimal selection and effect evaluation of re-fracturing intervals of shale-gas horizontal wells[J]. Natural Gas Industry, 2018, 38(7): 59–64. doi: 10.3787/j.issn.1000-0976.2018.07.008
|
[13] |
赵振峰,李宪文,马新星,等. “井工厂” 压裂模式下水力裂缝动态扩展模拟分析[J]. 长江大学学报(自然科学版),2021,18(6):55–62.
ZHAO Zhenfeng, LI Xianwen, MA Xinxing, et al. Simulation analysis of dynamic propagation of hydraulic fracture under“well factory”fracturing mode[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(6): 55–62.
|
[14] |
曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073
ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
|
[15] |
李奎东,纪国法,刘炜,等. 页岩水平井重复压裂现地应力场计算方法[J]. 天然气勘探与开发,2020,43(3):110–118.
LI Kuidong, JI Guofa, LIU Wei, et al. A method for calculating current in-situ stress field before refracturing horizontal shale wells[J]. Natural Gas Exploration and Development, 2020, 43(3): 110–118.
|
[16] |
张炜. 深部页岩压裂缝网体积模拟及应用[J]. 石油钻采工艺,2021,43(1):97–103.
ZHANG Wei. Deep shale hydraulic fracture network volume model and its application[J]. Oil Drilling & Production Technology, 2021, 43(1): 97–103.
|
[17] |
任佳伟,王贤君,张先敏,等. 大庆致密油藏水平井重复压裂及裂缝参数优化模拟[J]. 断块油气田,2020,27(5):638–642.
REN Jiawei, WANG Xianjun, ZHANG Xianmin, et al. Refracturing and fracture parameters optimization simulation for horizontal well in Daqing tight oil reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 638–642.
|
[18] |
曾凌翔,郑云川,蒲祖凤. 页岩重复压裂工艺技术研究及应用[J]. 钻采工艺,2020,43(1):65–68. doi: 10.3969/J.ISSN.1006-768X.2020.01.19
ZENG Lingxiang, ZHENG Yunchuan, PU Zufeng. Research and application of shale refracturing technology[J]. Drilling & Production Technology, 2020, 43(1): 65–68. doi: 10.3969/J.ISSN.1006-768X.2020.01.19
|
[19] |
许建国,刘光玉,王艳玲. 致密储层缝内暂堵转向压裂工艺技术[J]. 石油钻采工艺,2021,43(3):374–378.
XU Jianguo, LIU Guangyu, WANG Yanling. Intrafracture temporary plugging and diversion fracturing technology suitable for tight reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 374–378.
|
[20] |
李庆辉,李少轩,刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏,2021,28(3):130–138. doi: 10.3969/j.issn.1006-6535.2021.03.020
LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fracturing stimulation[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 130–138. doi: 10.3969/j.issn.1006-6535.2021.03.020
|
[21] |
李宪文,刘顺,陈强,等. 考虑复杂裂缝网络的致密油藏水平井体积压裂改造效果评价[J]. 石油钻探技术,2019,47(6):73–82. doi: 10.11911/syztjs.2019126
LI Xianwen, LIU Shun, CHEN Qiang, et al. An evaluation of the stimulation effect of horizontal well volumetric fracturing in tight reservoirs with complex fracture networks[J]. Petroleum Drilling Techniques, 2019, 47(6): 73–82. doi: 10.11911/syztjs.2019126
|