LIU Yaowen, MING Yue, ZHANG Xudong, BIAN Xiaobing, ZHANG Chi, WANG Haitao. “Casing in Casing” Mechanical Isolation Refracturing Technology in Fuling Shale Gas Wells[J]. Petroleum Drilling Techniques, 2022, 50(3): 86-91. DOI: 10.11911/syztjs.2022010
Citation: LIU Yaowen, MING Yue, ZHANG Xudong, BIAN Xiaobing, ZHANG Chi, WANG Haitao. “Casing in Casing” Mechanical Isolation Refracturing Technology in Fuling Shale Gas Wells[J]. Petroleum Drilling Techniques, 2022, 50(3): 86-91. DOI: 10.11911/syztjs.2022010

“Casing in Casing” Mechanical Isolation Refracturing Technology in Fuling Shale Gas Wells

More Information
  • Received Date: January 25, 2021
  • Revised Date: March 15, 2022
  • Available Online: April 18, 2022
  • The application of temporary plugging and diverting refracturing in Fuling Shale Gas Field brought on technical difficulties accompanied by poor production increase. To solve this problem, this paper analyzed principles and characteristics of technologies used in shale gas wells abroad. They included temporary plugging and diverting refracturing, and mechanical isolation refracturing. What was found was that that mechanical isolation could completely block the perforations and precisely control fracture initiation of hydraulic refracturing. From that, the “casing in casing” mechanical isolation refracturing technology took shape. In Fuling Shale Gas Field, this technology was tested with a casing (outer diameter of 88.9 mm) inserted into the other one (inner diameter of 115.0 mm) where in a new and closed well casing was formed. In addition, refracturing technologies targeted for different residual oil distribution in the reservoir were developed through studies. In the original well casing, attention should be paid to exploring the residual oil among fractures in the stimulated well section. At the same time,emphasis should target the poorly stimulated sections, to see how to recover the flow conductivity of the fractures. After implementing that technology in Well JYAHF, the recoverable reserve for a single well increased by 0.36×108 m3, and the recovery efficiency increased by 4.8%. The study shows that the “casing in casing” mechanical isolation refracturing technology can significantly improve the result of stimulation and provide technical support for long-term and efficient shale gas field development in China.

  • [1]
    任岚,黄静,赵金洲,等. 页岩气水平井重复压裂产能数值模拟[J]. 天然气勘探与开发,2019,42(2):100–106.

    REN Lan, HUANG Jing, ZHAO Jinzhou, et al. Numerical simulation on productivity when shale-gas horizontal-well refracturing[J]. Natural Gas Exploration and Development, 2019, 42(2): 100–106.
    [2]
    夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96. doi: 10.11911/syztjs.2020065

    XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96. doi: 10.11911/syztjs.2020065
    [3]
    王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质,2014,35(3):425–430. doi: 10.11743/ogg201418

    WANG Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling Area[J]. Oil & Gas Geology, 2014, 35(3): 425–430. doi: 10.11743/ogg201418
    [4]
    肖博,李双明,蒋廷学,等. 页岩气井暂堵重复压裂技术研究进展[J]. 科学技术与工程,2020,20(24):9707–9715. doi: 10.3969/j.issn.1671-1815.2020.24.004

    XIAO Bo, LI Shuangming, JIANG Tingxue, et al. Research progress on temporary-plugging refracturing technology for shale gas wells[J]. Science Technology and Engineering, 2020, 20(24): 9707–9715. doi: 10.3969/j.issn.1671-1815.2020.24.004
    [5]
    张永春. 泾河油田致密低渗油藏水平井重复压裂技术[J]. 断块油气田,2021,28(5):711–715.

    ZHANG Yongchun. Horizontal well re-fracturing technology in tight and low permeability reservoir of Jinghe Oilfield[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 711–715.
    [6]
    蔡卓林,赵续荣,南荣丽,等. 暂堵转向结合高排量体积重复压裂技术[J]. 断块油气田,2020,27(5):661–665.

    CAI Zhuolin, ZHAO Xurong, NAN Rongli, et al. Volume re-fracturing technology of temporary plugging and diverting with high displacement[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 661–665.
    [7]
    崔静,高东伟,毕文韬,等. 页岩气井重复压裂选井评价模型研究及应用[J]. 岩性油气藏,2018,30(6):145–150. doi: 10.12108/yxyqc.20180618

    CUI Jing, GAO Dongwei, BI Wentao, et al. Refracturing selection evaluation model for shale gas wells and its application[J]. Lithologic Reservoirs, 2018, 30(6): 145–150. doi: 10.12108/yxyqc.20180618
    [8]
    王峻源,徐太平,周京伟,等. 高强度长效暂堵剂在水平井重复压裂上的应用[J]. 化工设计通讯,2020,46(8):83–85. doi: 10.3969/j.issn.1003-6490.2020.08.057

    WANG Junyuan, XU Taiping, ZHOU Jingwei, et al. Application of a high-strength and long-acting temporary plugging agent in horizontal well re-fracturing[J]. Chemical Engineering Design Communications, 2020, 46(8): 83–85. doi: 10.3969/j.issn.1003-6490.2020.08.057
    [9]
    何海波. 致密油水平井缝网增能重复压裂技术实践[J]. 特种油气藏,2018,25(4):170–174. doi: 10.3969/j.issn.1006-6535.2018.04.034

    HE Haibo. Practice of re-fracturing with network energization for horizontal well in tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 170–174. doi: 10.3969/j.issn.1006-6535.2018.04.034
    [10]
    周丹,熊旭东,何军榜,等. 低渗透储层多级转向压裂技术[J]. 石油钻探技术,2020,48(1):85–89. doi: 10.11911/syztjs.2019077

    ZHOU Dan, XIONG Xudong, HE Junbang, et al. Multi-stage deflective fracturing technology for low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85–89. doi: 10.11911/syztjs.2019077
    [11]
    马俊修,兰正凯,王丽荣,等. 有效改造体积压裂效果评价方法及应用[J]. 特种油气藏,2021,28(5):126–133. doi: 10.3969/j.issn.1006-6535.2021.05.018

    MA Junxiu, LAN Zhengkai, WANG Lirong, et al. Evaluation method and application of ESRV fracturing effect[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 126–133. doi: 10.3969/j.issn.1006-6535.2021.05.018
    [12]
    李彦超,何昀宾,肖剑锋,等. 页岩气水平井重复压裂层段优选与效果评估[J]. 天然气工业,2018,38(7):59–64. doi: 10.3787/j.issn.1000-0976.2018.07.008

    LI Yanchao, HE Yunbin, XIAO Jianfeng, et al. Optimal selection and effect evaluation of re-fracturing intervals of shale-gas horizontal wells[J]. Natural Gas Industry, 2018, 38(7): 59–64. doi: 10.3787/j.issn.1000-0976.2018.07.008
    [13]
    赵振峰,李宪文,马新星,等. “井工厂” 压裂模式下水力裂缝动态扩展模拟分析[J]. 长江大学学报(自然科学版),2021,18(6):55–62.

    ZHAO Zhenfeng, LI Xianwen, MA Xinxing, et al. Simulation analysis of dynamic propagation of hydraulic fracture under“well factory”fracturing mode[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(6): 55–62.
    [14]
    曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
    [15]
    李奎东,纪国法,刘炜,等. 页岩水平井重复压裂现地应力场计算方法[J]. 天然气勘探与开发,2020,43(3):110–118.

    LI Kuidong, JI Guofa, LIU Wei, et al. A method for calculating current in-situ stress field before refracturing horizontal shale wells[J]. Natural Gas Exploration and Development, 2020, 43(3): 110–118.
    [16]
    张炜. 深部页岩压裂缝网体积模拟及应用[J]. 石油钻采工艺,2021,43(1):97–103.

    ZHANG Wei. Deep shale hydraulic fracture network volume model and its application[J]. Oil Drilling & Production Technology, 2021, 43(1): 97–103.
    [17]
    任佳伟,王贤君,张先敏,等. 大庆致密油藏水平井重复压裂及裂缝参数优化模拟[J]. 断块油气田,2020,27(5):638–642.

    REN Jiawei, WANG Xianjun, ZHANG Xianmin, et al. Refracturing and fracture parameters optimization simulation for horizontal well in Daqing tight oil reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 638–642.
    [18]
    曾凌翔,郑云川,蒲祖凤. 页岩重复压裂工艺技术研究及应用[J]. 钻采工艺,2020,43(1):65–68. doi: 10.3969/J.ISSN.1006-768X.2020.01.19

    ZENG Lingxiang, ZHENG Yunchuan, PU Zufeng. Research and application of shale refracturing technology[J]. Drilling & Production Technology, 2020, 43(1): 65–68. doi: 10.3969/J.ISSN.1006-768X.2020.01.19
    [19]
    许建国,刘光玉,王艳玲. 致密储层缝内暂堵转向压裂工艺技术[J]. 石油钻采工艺,2021,43(3):374–378.

    XU Jianguo, LIU Guangyu, WANG Yanling. Intrafracture temporary plugging and diversion fracturing technology suitable for tight reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 374–378.
    [20]
    李庆辉,李少轩,刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏,2021,28(3):130–138. doi: 10.3969/j.issn.1006-6535.2021.03.020

    LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fracturing stimulation[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 130–138. doi: 10.3969/j.issn.1006-6535.2021.03.020
    [21]
    李宪文,刘顺,陈强,等. 考虑复杂裂缝网络的致密油藏水平井体积压裂改造效果评价[J]. 石油钻探技术,2019,47(6):73–82. doi: 10.11911/syztjs.2019126

    LI Xianwen, LIU Shun, CHEN Qiang, et al. An evaluation of the stimulation effect of horizontal well volumetric fracturing in tight reservoirs with complex fracture networks[J]. Petroleum Drilling Techniques, 2019, 47(6): 73–82. doi: 10.11911/syztjs.2019126
  • Related Articles

    [1]QIN Chun, LIU Chunren, LI Yuzhi, WANG Zhiguo, CHEN Wenke. Key Technologies for Enhancing the Drilling Speed of Fault Block Shale Oil Horizontal Wells in Subei Basin[J]. Petroleum Drilling Techniques, 2024, 52(6): 30-36. DOI: 10.11911/syztjs.2024116
    [2]JI Zhaosheng, YUAN Guodong, CHAO Wenxue, JIANG Jinbao, BAI Wangdong. Key Technology for Speeding up and Improving Efficiency of Ultra-Deep Slim-Hole Directional Drilling in Tarim Basin[J]. Petroleum Drilling Techniques, 2024, 52(4): 8-14. DOI: 10.11911/syztjs.2024064
    [3]JIN Junbin, DONG Xiaoqiang, WANG Weiji, ZHANG Dujie. Drilling Fluid Technology for Complex Deep Cambrian Formationsin Tarim Basin[J]. Petroleum Drilling Techniques, 2024, 52(2): 165-173. DOI: 10.11911/syztjs.2024042
    [4]WANG Jingpeng, ZHANG Wei, WU Jiwei, WEI Ruihua, MA Jinming, YANG Hu. Precise Dynamic Managed-Pressure Cementing Technologies for ϕ139.7 mm Liner Cementing in Well Hutan-1[J]. Petroleum Drilling Techniques, 2022, 50(6): 92-97. DOI: 10.11911/syztjs.2022021
    [5]ZHANG Zhengyu, YUAN Jun, LI Yangbing. Application of Rigid HTHP Pipe-Conveyed Memory Logging Systemin Ultra-Deep Wells[J]. Petroleum Drilling Techniques, 2022, 50(5): 117-124. DOI: 10.11911/syztjs.2022079
    [6]WU Bozhi, ZHANG Huaibing. Cementing Technology of a Self-Healing Cement Slurry in the Carbonate Formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67-73. DOI: 10.11911/syztjs.2020071
    [7]YU Deshui, XU Hong, WU Xiuzhen, CHEN Yingwei, XU Jinyong. High Performance Anti-Sloughing Water Based Drilling Fluid Technology for Well Manshen 1 in the Ordovician Sangtamu Formation[J]. Petroleum Drilling Techniques, 2020, 48(5): 49-54. DOI: 10.11911/syztjs.2020070
    [8]TENG Xueqing, KANG Yili, ZHANG Zhen, YOU Lijun, YANG Yuzeng, LIN Chong. Evaluation of Drilling and Completion Damage in Deep Medium-to-High Permeability Sandstone Reservoir in Tarim Basin[J]. Petroleum Drilling Techniques, 2018, 46(1): 37-43. DOI: 10.11911/syztjs.2018007
    [9]JIN Junbin. Drilling Fluid Technology for Igneous Rocks in Ultra-Deep Wells in the Shunbei Area, Tarim Basin[J]. Petroleum Drilling Techniques, 2016, 44(6): 17-23. DOI: 10.11911/syztjs.201606003
    [10]WU Jiang, ZHU Xinhua, LI Yanjun, YANG Zhonghan. HTHP Liner Cementing Techniques in the Dongfang 13-1 Gas Field in the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2016, 44(4): 17-21. DOI: 10.11911/syztjs.201604004
  • Cited by

    Periodical cited type(7)

    1. 李思琪,陈卓,李杉,李玮,郭金玉,刘德伟. 基于定切深和状态依赖时滞的共振冲击钻井系统动力学特性. 中国石油大学学报(自然科学版). 2024(01): 124-132 .
    2. 李根生,穆总结,田守嶒,黄中伟,孙照伟. 冲击破岩钻井提速技术研究现状与发展建议. 新疆石油天然气. 2024(01): 1-12 .
    3. 张诗达,朱勇,高强,苏红. 旋冲钻井技术研究现状与展望. 排灌机械工程学报. 2024(05): 497-507 .
    4. 杨小聪,黄丹,岳小磊,王想. 非煤矿山机械连续采矿技术研究进展与发展趋势. 有色金属(矿山部分). 2024(06): 1-24 .
    5. 向玲,王成东,周政. 硬岩地基基础快速成桩技术的研究进展. 城市建设理论研究(电子版). 2024(32): 117-119 .
    6. 刘永旺,魏森,管志川,邹德永,梁红军,陶兴华,玄令超,张建龙. 旋转冲击钻井方法硬岩破岩钻进特性的实验研究. 实验技术与管理. 2022(05): 44-48+59 .
    7. 王少锋,孙立成,周子龙,吴毓萌,石鑫垒. 非爆破岩理论和技术发展与展望. 中国有色金属学报. 2022(12): 3883-3912 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (425) PDF downloads (80) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return