LI Kaikai, AN Ran, YUE Pandong, CHEN Shidong, YANG Kailan, WEI Wen. Large-Scale Energy Storage Volumetric Fracturing Technology for Horizontal Wells in the An 83 Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 125-129. DOI: 10.11911/syztjs.2021026
Citation: LI Kaikai, AN Ran, YUE Pandong, CHEN Shidong, YANG Kailan, WEI Wen. Large-Scale Energy Storage Volumetric Fracturing Technology for Horizontal Wells in the An 83 Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 125-129. DOI: 10.11911/syztjs.2021026

Large-Scale Energy Storage Volumetric Fracturing Technology for Horizontal Wells in the An 83 Shale Oil Reservoir

More Information
  • Received Date: February 09, 2021
  • Revised Date: June 29, 2021
  • Available Online: July 15, 2021
  • Early single-well stimulation attempts in the An83 shale oil reservoir failed to achieve the desired results due to its tight formation and poor energy replenishing effect. According to the previous attempts at energy storage by water injection and refracturing experiments, formation energy was replenished through water injection and the fracturing tools were upgraded. On this basis, extreme clustered perforation, differential reservoir stimulation and multistage dynamic temporary plugging were studied to improve the complexity of fractures, and the well shut-in time was optimized. Finally, the large-scale energy storage volumetric fracturing technology was formed. Field testing results showed that the production of horizontal wells was significantly increased by using the new technology, and the daily oil production of a single test well achieved up to 7 times that of adjacent wells. After 10 months of production, the cumulative oil increment of a single well reached 2 010 tons, with good economic benefits. The technology can replenish the energy of reservoir and effectively stimulate the reservoir, providing a reference for the development of other similar reservoirs.
  • [1]
    李忠兴,屈雪峰,刘万涛,等. 鄂尔多斯盆地长7段致密油合理开发方式探讨[J]. 石油勘探与开发,2015,42(2):217–221. doi: 10.11698/PED.2015.02.11

    LI Zhongxing, QU Xuefeng, LIU Wantao, et al. Development modes of Triassic Yanchang Formation Chang7 Member tight oil in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 217–221. doi: 10.11698/PED.2015.02.11
    [2]
    胥云,雷群,陈铭,等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发,2018,45(5):874–887.

    XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874–887.
    [3]
    张春辉. 连续油管结合双封单卡压裂技术应用[J]. 石油矿场机械,2014,43 (5):60–62. doi: 10.3969/j.issn.1001-3482.2014.05.017

    ZHANG Chunhui. Application of coiled tubing frac technique using double-sealing and single-stick[J]. Oil Field Equipment, 2014, 43 (5): 60–62. doi: 10.3969/j.issn.1001-3482.2014.05.017
    [4]
    张红妮,陈井亭. 低渗透油田蓄能整体压裂技术研究:以吉林油田外围井区为例[J]. 非常规油气,2015,2(5):55–60. doi: 10.3969/j.issn.2095-8471.2015.05.010

    ZHANG Hongni, CHEN Jingting. Insights into energy storage bulk fracturing technology for low-permeability oilfields: a case study of peripheral wellblock of Jilin Oilfield[J]. Unconventional Oil & Gas, 2015, 2(5): 55–60. doi: 10.3969/j.issn.2095-8471.2015.05.010
    [5]
    何海波. 致密油水平井缝网增能重复压裂技术实践[J]. 特种油气藏,2018,25(4):170–174. doi: 10.3969/j.issn.1006-6535.2018.04.034

    HE Haibo. Practice of re-fracturing with network energization for horizontal well in tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 170–174. doi: 10.3969/j.issn.1006-6535.2018.04.034
    [6]
    吴顺林,刘汉斌,李宪文,等. 鄂尔多斯盆地致密油水平井细分切割缝控压裂试验与应用[J]. 钻采工艺,2020,43(3):53–55. doi: 10.3969/J.ISSN.1006-768X.2020.03.16

    WU Shunlin, LIU Hanbin, LI Xianwen, et al. Test and application of subdivision fracture control fracturing for tight oil horizontal wells in Ordos Basin[J]. Drilling & Production Technology, 2020, 43(3): 53–55. doi: 10.3969/J.ISSN.1006-768X.2020.03.16
    [7]
    闫林,冉启全,高阳,等. 陆相致密油藏差异化含油特征与控制因素[J]. 西南石油大学学报(自然科学版),2017,39(6):45–54.

    YAN Lin, RAN Qiquan, GAO Yang, et al. The differentiation oil-bearing characteristic and control factors of continental tight oil[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(6): 45–54.
    [8]
    闫林,袁大伟,陈福利,等. 陆相致密油藏差异化含油控制因素及分布模式[J]. 新疆石油地质,2019,40(3):262–268.

    YAN Lin, YUAN Dawei, CHEN Fuli, et al. A study on differentiated oil-bearing controlling factors and distribution patterns of continental tight oil reservoir[J]. Xinjiang Petroleum Geology, 2019, 40(3): 262–268.
    [9]
    苏良银,白晓虎,陆红军,等. 长庆超低渗透油藏低产水平井重复改造技术研究及应用[J]. 石油钻采工艺,2017,39(4):521–527.

    SU Liangyin, BAI Xiaohu, LU Hongjun, et al. Study on repeated stimulation technology and its application to in low-yield horizontal wells in ultra low permeability oil reservoirs, Changqing Oilfeld[J]. Oil Drilling & Production Technology, 2017, 39(4): 521–527.
    [10]
    陶亮,郭建春,李凌铎,等. 致密油藏水平井重复压裂多级选井方法研究[J]. 特种油气藏,2018,25(4):67–71. doi: 10.3969/j.issn.1006-6535.2018.04.013

    TAO Liang, GUO Jianchun, LI Lingduo, et al. Multi-stage well selection for refracturing operations in horizontal wells for tight oil reservoir development[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 67–71. doi: 10.3969/j.issn.1006-6535.2018.04.013
    [11]
    曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
    [12]
    郭建春,李杨,王世彬. 滑溜水在页岩储集层的吸附伤害及控制措施[J]. 石油勘探与开发,2018,45(2):320–325.

    GUO Jianchun, LI Yang, WANG Shibin. Adsorption damage and control measures of slick-water fracturing fluid in shale reser-voirs[J]. Petroleum Exploration and Development, 2018, 45(2): 320–325.
    [13]
    孙金声,许成元,康毅力,等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术,2020,48(4):1–10. doi: 10.11911/syztjs.2020068

    SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1–10. doi: 10.11911/syztjs.2020068
    [14]
    樊建明,王冲,屈雪峰,等. 鄂尔多斯盆地致密油水平井注水吞吐开发实践:以延长组长7油层组为例[J]. 石油学报,2019,40(6):706 –715. doi: 10.7623/syxb201906006

    FAN Jianming, WANG Chong, QU Xuefeng, et al. Development and practice of water flooding huff–puff in tight oil horizontal well, Ordos Basin: a case study of Yanchang Formation Chang 7 oil layer[J]. Acta Petrolei Sinica, 2019, 40(6): 706 –715. doi: 10.7623/syxb201906006
  • Related Articles

    [1]QIAO Runwei, ZHANG Shicheng, LI Fengxia, WANG Fei, LI Ning. Characteristics of Imbibition, Displacement, and Fluid Seepage in High Clay Content Shale Condensate Gas Reservoir in the Fuxing Area[J]. Petroleum Drilling Techniques, 2024, 52(1): 96-106. DOI: 10.11911/syztjs.2023121
    [2]WENG Dingwei, JIANG Yun, YI Xinbin, HE Chunming, CHE Mingguang, ZHU Yihui. Optimization of Shut-in Time in Shale Gas Wells Based on the Characteristics of Fracturing Flowback[J]. Petroleum Drilling Techniques, 2023, 51(5): 49-57. DOI: 10.11911/syztjs.2023080
    [3]ZHANG Kuangsheng, QI Yin, XUE Xiaojia, TAO Liang, CHEN Wenbin, WU An’an. CO2 Regional Enhanced Volumetric Fracturing Technology for Shale Oil Horizontal Wells in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 15-22. DOI: 10.11911/syztjs.2023091
    [4]CHEN Zhiming, ZHAO Pengfei, CAO Nai, LIAO Xinwei, WANG Jianan, LIU Hui. Fracturing Parameters Optimization of Horizontal Wells in Shale Reservoirsduring "Well Fracturing-Soaking-Producing"[J]. Petroleum Drilling Techniques, 2022, 50(2): 30-37. DOI: 10.11911/syztjs.2022005
    [5]ZHANG Kuangsheng, TANG Meirong, TAO Liang, DU Xianfei. Horizontal Well Volumetric Fracturing Technology Integrating Fracturing, Energy Enhancement, and Imbibition for Shale Oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9-15. DOI: 10.11911/syztjs.2022003
    [6]OUYANG Weiping, ZHANG Mian, SUN Hu, ZHANG Yunyi, CHI Xiaoming. Numerical Simulation of Oil Displacement by Fracturing Imbibition in Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143-149. DOI: 10.11911/syztjs.2021083
    [7]XU Feng, YAO Yuedong, WU Chengmei, XU Zhang, ZHANG Jinfeng, ZHAO Guoxiang. Effect of Temperature on the Imbibition Efficiency of the Jimusar Tight Oil Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(5): 100-104. DOI: 10.11911/syztjs.2020114
    [8]FENG Wangsheng, SONG Weibin, ZHENG Huikai, LI Zongyao, XIE Chengbin. The Influence Law of Shear Rate on the Thickening Time of Cement Slurry[J]. Petroleum Drilling Techniques, 2016, 44(6): 74-77. DOI: 10.11911/syztjs.201606012
    [9]He Tao, Guo Jianchun, Lu Cong, Jing Yuquan. Optimization of Shut-in Time between the First and Second Fracturing by means of Pressure Decline Analysis[J]. Petroleum Drilling Techniques, 2015, 43(2): 110-115. DOI: 10.11911/syztjs.201502019
    [10]Liang Dan, Zeng Xianglin, Fang Maojun. The Effect Analysis of Shut-in Coning Control[J]. Petroleum Drilling Techniques, 2012, 40(6): 67-70. DOI: 10.3969/j.issn.1001-0890.2012.06.014
  • Cited by

    Periodical cited type(10)

    1. 黄婷,薛小佳,康博,董奇,周大伟,徐全胜. 重复压裂非均匀孔隙压力场对裂缝延伸的影响. 断块油气田. 2023(03): 475-479+522 .
    2. 李贤胜,邱小雪,陈明江,李玮,刘向君,杨孛. 基于等效介质理论的页岩声波数值模拟方法研究. 特种油气藏. 2023(03): 63-72 .
    3. 孔祥伟,卾玄吉,齐天俊,陈青,任勇,王素兵,李亭,刘宇. 页岩气井复合暂堵泵压数学模型及影响因素. 特种油气藏. 2023(04): 156-162 .
    4. 袁飞宇,唐潮,张超,付亚飞,陈波. 团簇效应对裂缝连通性的影响. 特种油气藏. 2023(06): 107-113 .
    5. 俞天喜,王雷,陈蓓蓓,孙锡泽,李圣祥,朱振龙. 基于盐溶和蠕变作用的含盐储层裂缝导流能力变化规律研究与应用. 特种油气藏. 2023(06): 157-164 .
    6. Guang-Long Sheng,Hui Zhao,Jia-Ling Ma,Hao Huang,Hai-Yang Deng,Wen-Tao Zhan,Yu-Yang Liu. A new approach for flow simulation in complex hydraulic fracture morphology and its application: Fracture connection element method. Petroleum Science. 2023(05): 3002-3012 .
    7. 刘红磊,徐胜强,朱碧蔚,周林波,黄亚杰,李保林. 盐间页岩油体积压裂技术研究与实践. 特种油气藏. 2022(02): 149-156 .
    8. 蔡萌,唐鹏飞,魏旭,刘宇,张浩,张宝岩,耿丹丹. 松辽盆地古龙页岩油复合体积压裂技术优化. 大庆石油地质与开发. 2022(03): 156-164 .
    9. 侯亚伟,刘超,徐中波,安玉华,李景玲. 多层水驱开发油田采收率快速预测方法. 石油钻探技术. 2022(05): 82-87 . 本站查看
    10. 王雪飞,王素玲,侯峰,王明,李雪梅,孙丹丹. 基于CFD-DEM方法的迂曲裂缝中支撑剂运移关键影响因素分析. 特种油气藏. 2022(06): 150-158 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (775) PDF downloads (144) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return