CHEN Zhiming, ZHAO Pengfei, CAO Nai, LIAO Xinwei, WANG Jianan, LIU Hui. Fracturing Parameters Optimization of Horizontal Wells in Shale Reservoirsduring "Well Fracturing-Soaking-Producing"[J]. Petroleum Drilling Techniques, 2022, 50(2): 30-37. DOI: 10.11911/syztjs.2022005
Citation: CHEN Zhiming, ZHAO Pengfei, CAO Nai, LIAO Xinwei, WANG Jianan, LIU Hui. Fracturing Parameters Optimization of Horizontal Wells in Shale Reservoirsduring "Well Fracturing-Soaking-Producing"[J]. Petroleum Drilling Techniques, 2022, 50(2): 30-37. DOI: 10.11911/syztjs.2022005

Fracturing Parameters Optimization of Horizontal Wells in Shale Reservoirsduring "Well Fracturing-Soaking-Producing"

More Information
  • Received Date: July 28, 2021
  • Revised Date: January 03, 2022
  • Available Online: January 14, 2022
  • Regarding the absence of a systemic and complete method for optimizing the multi-stage fracturing parameters of horizontal wells in shale reservoirs during well fracturing-soaking-producing, a fracturing parameter optimization method was developed based on the dynamic inversion theory. First, a numerical model (EDFM-NM) for horizontal wells was established depending on the complex induced fracture networks formed in hydraulic fracturing of shale oil reservoirs, which takes into consideration the characteristics of the reservoirs as well as complex natural fractures. With the model, solution for the pressure of reservoirs with discrete natural fractures and numerical solution of bottom hole pressure of horizontal wells after multi-stage fracturing were obtained. Second, approaches for optimization of stage spacing, soaking time, and well spacing were proposed utilizing the dynamic analysis. Finally, the optimization method was applied to shale oil Well XC in Changqing Oilfield. Reasonable stage spacing, soaking time, and well spacing were found to be 100−125 m, 25−35 d, and 590−610 m, respectively. The research results can provide a theoretical basis for the optimization of fracturing parameters during “well fracturing–soaking–producing” of shale reservoirs in Changqing Oilfield.
  • [1]
    MUSKAT M. The flow of homogeneous fluids through porous[J]. SPE Journal, 1946, 103(1): 219–249.
    [2]
    翟云芳. 渗流力学[M]. 3版. 北京: 石油工业出版社, 2009: 54-73.

    ZHAI Yunfang. Seepage mechanics[M]. 3rd ed. Beijing: Petroleum Industry Press, 2009: 54-73.
    [3]
    齐与峰. 砂岩油田注水开发合理井网研究中的几个理论问题[J]. 石油学报,1990,11(4):51–60. doi: 10.3321/j.issn:0253-2697.1990.04.005

    QI Yufeng. Some theoretical considerations on optimal well pattern analysis in a water flooding sandy oil reservoir[J]. Acta Petrolei Sinica, 1990, 11(4): 51–60. doi: 10.3321/j.issn:0253-2697.1990.04.005
    [4]
    尹建,郭建春,曾凡辉. 水平井分段压裂射孔间距优化方法[J]. 石油钻探技术,2012,40(5):67–71. doi: 10.3969/j.issn.1001-0890.2012.05.015

    YIN Jian, GUO Jianchun, ZENG Fanhui. Perforation spacing optimization for staged fracturing of horizontal well[J]. Petroleum Drilling Techniques, 2012, 40(5): 67–71. doi: 10.3969/j.issn.1001-0890.2012.05.015
    [5]
    蒲春生,陈庆栋,吴飞鹏,等. 致密砂岩油藏水平井分段压裂布缝与参数优化[J]. 石油钻探技术,2014,42(6):73–79.

    PU Chunsheng, CHEN Qingdong, WU Feipeng, et al. Staged fracturing pattern and parameter optimization of horizontal wells in tight sandstone oil reservoir[J]. Petroleum Drilling Techniques, 2014, 42(6): 73–79.
    [6]
    蒋廷学,卞晓冰,袁凯,等. 页岩气水平井分段压裂优化设计新方法[J]. 石油钻探技术,2014,42(2):1–6.

    JIANG Tingxue, BIAN Xiaobing, YUAN Kai, et al. A new method in staged fracturing design optimization for shale gas horizontal wells[J]. Petroleum Drilling Techniques, 2014, 42(2): 1–6.
    [7]
    刘闯. 水平井水力压裂数值模拟与施工参数优化研究[D]. 合肥: 中国科学技术大学, 2017.

    LIU Chuang. Numerical investigating the hydraulic fracturing of horizontal well and the optimization of stimulation parameters[D]. Hefei: University of Science and Technology of China, 2017.
    [8]
    王天驹,陈赞,王蕊,等. 致密砂岩油藏体积压裂簇间距优化新方法[J]. 新疆石油地质,2019,40(3):351–356.

    WANG Tianju, CHEN Zan, WANG Rui, et al. A new method for cluster spacing optimization during volumetric fracturing in tight sandstone oil reservoirs[J]. Xinjiang Petroleum Geology, 2019, 40(3): 351–356.
    [9]
    林旺,范洪富,闫林,等. 致密油藏注水吞吐参数优化模拟:以吉林扶余油层为例[J]. 中国科技论文,2019,14(9):937–942. doi: 10.3969/j.issn.2095-2783.2019.09.001

    LIN Wang, FAN Hongfu, YAN Lin, et al. Optimization of engineering parameters for horizontal huff and puff development of tight reservoir: taking Fuyu oil layer in Jilin as an example[J]. China Sciencepaper, 2019, 14(9): 937–942. doi: 10.3969/j.issn.2095-2783.2019.09.001
    [10]
    王继坤. 致密砂岩油藏压后关井时间优化模型研究[D]. 北京: 中国地质大学(北京), 2020.

    WANG Jikun. Study on optimization model of shut-in time after fracturing in tight sandstone reservoir[D]. Beijing: China University of Geosciences(Beijing), 2020.
    [11]
    张矿生,唐梅荣,陈文斌,等. 压裂裂缝间距优化设计[J]. 科学技术与工程,2021,21(4):1367–1374. doi: 10.3969/j.issn.1671-1815.2021.04.017

    ZHANG Kuangsheng, TANG Meirong, CHEN Wenbin, et al. Optimization of fracture spacing for hydraulic fracturing[J]. Science Technology and Engineering, 2021, 21(4): 1367–1374. doi: 10.3969/j.issn.1671-1815.2021.04.017
    [12]
    付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007

    FU Jinhua, NIU Xiaobing, DAN Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007
    [13]
    董姜畅,王爱国,樊志强,等. 鄂尔多斯盆地中部延长组长7段致密储层成因及控制因素[J]. 断块油气田,2021,28(4):446–451.

    DONG Jiangchang,WANG Aiguo,FAN Zhiqiang, et al. Origin and dominated factors of Chang 7 Member tight reservoirs in Yanchang formation, central Ordos Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(4): 446–451.
    [14]
    杨华,梁晓伟,牛小兵,等. 陆相致密油形成地质条件及富集主控因素:以鄂尔多斯盆地三叠系延长组7段为例[J]. 石油勘探与开发,2017,44(1):12–20.

    YANG Hua, LIANG Xiaowei, NIU Xiaobing, et al. Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: A case of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 12–20.
    [15]
    付金华,喻建,徐黎明,等. 鄂尔多斯盆地致密油勘探开发新进展及规模富集可开发主控因素[J]. 中国石油勘探,2015,20(5):9–19. doi: 10.3969/j.issn.1672-7703.2015.05.002

    FU Jinhua, YU Jian, XU Liming, et al. New progress in exploration and development of tight oil in Ordos Basin and main controlling factors of large-scale enrichment and exploitable capacity[J]. China Petroleum Exploration, 2015, 20(5): 9–19. doi: 10.3969/j.issn.1672-7703.2015.05.002
    [16]
    赵国翔,姚约东,王链,等. 页岩油藏微尺度流动特征及应力敏感性分析[J]. 断块油气田,2021,28(2):247–252.

    ZHAO Guoxiang, YAO Yuedong, WANG Lian, et al. Microscale transport behaviors of shale oil and stress sensitivity analysis[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 247–252.
    [17]
    雷浩,何建华,胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏,2019,26(3):94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017

    LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017
    [18]
    王秀影,吴通,蔡军,等. 饶阳凹陷页岩油储层应力敏感规律[J]. 钻井液与完井液,2020,37(2):185–191. doi: 10.3969/j.issn.1001-5620.2020.02.009

    WANG Xiuying, WU Tong, CAI Jun, et al. Patterns of stress sensitivity of the shale oil reservoirs in Raoyang Depression[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 185–191. doi: 10.3969/j.issn.1001-5620.2020.02.009
    [19]
    慕立俊,吴顺林,徐创朝,等. 基于缝网扩展模拟的致密储层体积压裂水平井产能贡献分析[J]. 特种油气藏,2021,28(2):126–132. doi: 10.3969/j.issn.1006-6535.2021.02.019

    MU Lijun, WU Shunlin, XU Chuangchao, et al. Analysis on contribution to productivity of SRV-fractured horizontal wells in tight reservoirs based on simulation of fracture network propagation[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 126–132. doi: 10.3969/j.issn.1006-6535.2021.02.019
    [20]
    赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075

    ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075
    [21]
    管保山,刘玉婷,梁利,等. 页岩油储层改造和高效开发技术[J]. 石油钻采工艺,2019,41(2):212–223.

    GUAN Baoshan, LIU Yuting, LIANG Li, et al. Shale oil reservoir reconstruction and efficient development technology[J]. Oil Drilling & Production Technology, 2019, 41(2): 212–223.
    [22]
    闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058

    YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058
    [23]
    王磊,盛志民,赵忠祥,等. 吉木萨尔页岩油水平井大段多簇压裂技术[J]. 石油钻探技术,2021,49(4):106–111. doi: 10.11911/syztjs.2021091

    WANG Lei, SHENG Zhimin, ZHAO Zhongxiang, et al. Large-section and multi-cluster fracturing technology for horizontal wells in the Jimsar shale oil reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 106–111. doi: 10.11911/syztjs.2021091
    [24]
    沈产量,张景皓,张璐,等. 基于离散裂缝方法的多段压裂水平井数值试井模型[J]. 油气井测试,2021,30(1):1–8.

    SHEN Chanliang, ZHANG Jinghao, ZHANG Lu, et al. Numerical well test model of multi-stage fractured horizontal well based on discrete fracture method[J]. Well Testing, 2021, 30(1): 1–8.
    [25]
    LIU Hui, LIAO Xinwei, TANG Xuefeng, et al. A well test model based on embedded discrete-fracture method for pressure-transient analysis of fractured wells with complex fracture networks[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108042. doi: 10.1016/j.petrol.2020.108042
    [26]
    LIE K A. An introduction to reservoir simulation using MATLAB/GNU octave: user guide for the MATLAB Reservoir Simulation Toolbox (MRST)[M]. Cambridge: Cambridge University Press, 2019: 19–110.
  • Related Articles

    [1]LI Xiaoyi, ZHAO Xu, ZHOU Chao, CHEN Yongguang, LI Shunlin. Development and On-Site Application of Integrated Device for Acidification and Water Control in Puguang Gas Field[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025037
    [2]LI Wei, LIU Wenchen, ZHOU Xianhai, NI Hongjian, YU Fan, ZANG Yanbin. 3D Horizontal Wellbore Trajectory Optimization Design Method in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(2): 17-23. DOI: 10.11911/syztjs.2018041
    [3]Yan Guangqing, Zhang Jincheng. Status and Proposal of the Sinopec Ultra-Deep Drilling Technology[J]. Petroleum Drilling Techniques, 2013, 41(2): 1-6. DOI: 10.3969/j.issn.1001-0890.2013.02.001
    [4]Wu Han, Wu Xiaodong, Zhang Qingsheng, Fang Yue, Zhao Yuxin. Reasonable Diameter Selection of Production String for Puguang Gas Well with High H2S[J]. Petroleum Drilling Techniques, 2012, 40(1): 98-102. DOI: 10.3969/j.issn.1001-0890.2012.01.020
    [5]Overall Cementing Technology for Puguang Gas Field[J]. Petroleum Drilling Techniques, 2011, 39(1): 78-82. DOI: 10.3969/j.issn.1001-0890.2011.01.017
    [6]Safe Drilling Techniques Applied in Puguang HPHT Sour Gas Field[J]. Petroleum Drilling Techniques, 2011, 39(1): 12-17. DOI: 10.3969/j.issn.1001-0890.2011.01.003
  • Cited by

    Periodical cited type(10)

    1. 刘惠民,王敏生,李中超,陈宗琦,艾昆,王运海,毛怡,闫娜. 中国页岩油勘探开发面临的挑战与高效运营机制研究. 石油钻探技术. 2024(03): 1-10 . 本站查看
    2. 杨勇,张世明,吕琦,李伟忠,蒋龙,刘祖鹏,吕晶,任敏华,路广. 济阳坳陷古近系沙四段——沙三段页岩油立体评价探索与实践. 中国石油勘探. 2024(03): 31-44 .
    3. 李阳,曹小朋,赵清民,刘祖鹏,薛兆杰,蒋龙. 济阳坳陷陆相断陷盆地页岩油开发的几点思考. 石油钻探技术. 2024(04): 1-7 . 本站查看
    4. 吴壮坤,张宏录,池宇璇. 苏北页岩油二氧化碳强压质换技术. 石油钻探技术. 2024(04): 87-93 . 本站查看
    5. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
    6. 郭同政,张晋言,柴婧,包博婷,孙建孟. 基于测录井资料计算页岩含油饱和度与气油比的方法. 石油钻探技术. 2023(03): 126-136 . 本站查看
    7. 张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究. 石油钻探技术. 2023(05): 149-155 . 本站查看
    8. 张矿生,齐银,薛小佳,陶亮,陈文斌,武安安. 鄂尔多斯盆地页岩油水平井CO_2区域增能体积压裂技术. 石油钻探技术. 2023(05): 15-22 . 本站查看
    9. 朱海燕,焦子曦,刘惠民,周广清,王建东,张潦源. 济阳坳陷陆相页岩油气藏组合缝网高导流压裂关键技术. 天然气工业. 2023(11): 120-130 .
    10. 迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (811) PDF downloads (183) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return