Citation: | WENG Dingwei, JIANG Yun, YI Xinbin, et al. Optimization of shut-in time in shale gas wells based on the characteristics of fracturing flowback [J]. Petroleum Drilling Techniques,2023, 51(5):49-57. DOI: 10.11911/syztjs.2023080 |
To determine the shut-in time after fracturing and improve the ultimate gas recovery of shale gas wells, the optimization method of shut-in time in shale gas wells based on the characteristics of fracturing flowback fluid was proposed. The deep shale in Luzhou area and the medium and deep shale in Weiyuan area were studied. First, the shut-in time in the lab scale was obtained by spontaneous imbibition experiment. After that, fracture width and characteristic length in the field scale were inverted by using fracturing flowback fluid salinity and flowback efficiency data. Finally, the shut-in time in the field scale was calculated according to the dimensionless time model of spontaneous imbibition. The results indicated that the shut-in time was not always in a positive correlation with that in the lab scale. It was affected by factors including imbibition rate, fracturing flowback fluid salinity, flowback efficiency, etc. The result provides a new idea for optimizing shut-in time after fracturing of shale gas wells.
[1] |
US Energy Information Administration (EIA). Unconventional dry natural gas production [EB/OL]. [2022-12-30].https://www.eia.gov/naturalgas/data.phpproduction.
|
[2] |
刘鸿渊,蒲萧亦,张烈辉,等. 中国页岩气效益开发:理论逻辑、实践逻辑与展望[J]. 天然气工业,2023,43(4):177–183.
LIU Hongyuan, PU Xiaoyi, ZHANG Liehui, et al. Beneficial development of shale gas in China: Theoretical logic, practical logic and prospect[J]. Natural Gas Industry, 2023, 43(4): 177–183.
|
[3] |
高芸,王怡平,胡迤丹,等. 2022年中国天然气发展述评及2023年展望[J]. 天然气技术与经济,2023,17(1):1–10.
GAO Yun, WANG Yiping, HU Yidan, et al. China’s natural gas development: 2022 review and 2023 outlook[J]. Natural Gas Technology and Economy, 2023, 17(1): 1–10.
|
[4] |
陈志明,赵鹏飞,曹耐,等. 页岩油藏压裂水平井压–闷–采参数优化研究[J]. 石油钻探技术,2022,50(2):30–37.
CHEN Zhiming, ZHAO Pengfei, CAO Nai, et al. Fracturing parameters optimization of horizontal wells in shale reservoirs during “well fracturing-soaking-producing”[J]. Petroleum Drilling Techniques, 2022, 50(2): 30–37.
|
[5] |
蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势[J]. 石油钻探技术,2022,50(3):1–9.
JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development status and future trends of intelligent fracturing technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1–9.
|
[6] |
曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84.
ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84.
|
[7] |
韩慧芬,王良,贺秋云,等. 页岩气井返排规律及控制参数优化[J]. 石油钻采工艺,2018,40(2):253–260.
HAN Huifen, WANG Liang, HE Qiuyun, et al. Flowback laws and control parameter optimization of shale gas wells[J]. Oil Drilling & Production Technology, 2018, 40(2): 253–260.
|
[8] |
GHANBARI E, ABBASI M A, DEHGHANPOUR H, et al. Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production[R]. SPE 167165, 2013.
|
[9] |
申颍浩,葛洪魁,宿帅,等. 页岩气储层的渗吸动力学特性与水锁解除潜力[J]. 中国科学:物理学 力学 天文学,2017,47(11):114609.
SHEN Yinghao, GE Hongkui, SU Shuai, et al. Imbibition characteristic of shale gas formation and water-block removal capability[J]. SCIENTIA SINICA: Physica, Mechanica & Astronomica, 2017, 47(11): 114609.
|
[10] |
GHANBARI E, DEHGHANPOUR H. The fate of fracturing water: a field and simulation study[J]. Fuel, 2016, 163: 282–294. doi: 10.1016/j.fuel.2015.09.040
|
[11] |
WIJAYA N, SHENG J J. Effect of desiccation on shut-in benefits in removing water blockage in tight water-wet cores[J]. Fuel, 2019, 244: 314–323. doi: 10.1016/j.fuel.2019.01.180
|
[12] |
才博,毕国强,何春明,等. 人工裂缝复杂程度的压裂液返排表征方法及应用[J]. 石油钻采工艺,2017,39(1):20–24.
CAI Bo, BI Guoqiang, HE Chunming, et al. A characterization method on complexity degree of artificial fractures based on fracturing fluid flowback and its application[J]. Oil Drilling & Production Technology, 2017, 39(1): 20–24.
|
[13] |
CARPENTER C. Impact of liquid loading in hydraulic fractures on well productivity[J]. Journal of Petroleum Technology, 2013, 65(11): 162–165. doi: 10.2118/1113-0162-JPT
|
[14] |
BERTONCELLO A, WALLACE J, BLYTON C, et al. Imbibition and water blockage in unconventional reservoirs: Well-management implications during flowback and early production[J]. SPE Reservoir Evaluation and Engineering, 2014, 17(4): 497–506. doi: 10.2118/167698-PA
|
[15] |
YAICH E, WILLIAMS S, BOWSER A, et al. A case study: The impact of soaking on well performance in the Marcellus[R]. URTEC-2154766-MS, 2015.
|
[16] |
LAN Qing, GHANBARI E, DEHGHANPOUR H, et al. Water loss versus soaking time: Spontaneous imbibition in tight rocks[J]. Energy Technology, 2014, 2(12): 1033–1039. doi: 10.1002/ente.201402039
|
[17] |
MA Shouxiang, MORROW N R, ZHANG Xiaoyun. Generalized scaling of spontaneous imbibition data for strongly water-wet systems[J]. Journal of Petroleum Science and Engineering, 1997, 18(3/4): 165–178.
|
[18] |
MAKHANOV K, HABIBI A, DEHGHANPOUR H, et al. Liquid uptake of gas shales: a workflow to estimate water loss during shut-in periods after fracturing operations[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7: 22–32. doi: 10.1016/j.juogr.2014.04.001
|
[19] |
HANDY L L. Determination of effective capillary pressures for porous media from imbibition data[J]. Transactions of the AIME, 1960, 219(1): 75–80. doi: 10.2118/1361-G
|
[20] |
ROYCHAUDHURI B, TSOTSIS T T, JESSEN K. An experimental investigation of spontaneous imbibition in gas shales[J]. Journal of Petroleum Science and Engineering, 2013, 111: 87–97. doi: 10.1016/j.petrol.2013.10.002
|
[21] |
郭建成,林伯韬,向建华,等. 四川盆地龙马溪组页岩压后返排率及产能影响因素分析[J]. 石油科学通报,2019,4(3):273–287.
GUO Jiancheng, LIN Botao, XIANG Jianhua, et al. Study of factors affecting the flowback ratio and productive capacity of Longmaxi Formation shale in the Sichuan Basin after fracturing[J]. Petroleum Science Bulletin, 2019, 4(3): 273–287.
|
[22] |
WIJAYA N, SHENG J J. Comparative study of well soaking timing (pre vs. post flowback) for water blockage removal from matrix-fracture interface[J]. Petroleum, 2020, 6(3): 286–292. doi: 10.1016/j.petlm.2019.11.001
|
[23] |
HU Jinghong, ZHAO Haopeng, DU Xianfei, et al. An analytical model for shut-in time optimization after hydraulic fracturing in shale oil reservoirs with imbibition experiments[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110055. doi: 10.1016/j.petrol.2021.110055
|
[24] |
卜淘,严小勇,伍梓健,等. 基于返排期动态数据的页岩气井EUR快速评价方法[J]. 非常规油气,2023,10(3):74–79.
BU Tao, YAN Xiaoyong, WU Zijian, et al. Quick evaluation method of EUR for shale gas wells based on dynamic data of flowback period[J]. Unconventional Oil & Gas, 2023, 10(3): 74–79.
|
[25] |
杨海,李军龙,石孝志,等. 页岩气储层压后返排特征及意义[J]. 中国石油大学学报(自然科学版),2019,43(4):98–105.
YANG Hai, LI Junlong, SHI Xiaozhi, et al. Characteristics and significance of flow-back processes after fracturing in shale-gas reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(4): 98–105.
|
[26] |
ZOLFAGHARI A, DEHGHANPOUR H, GHANBARI E, et al. Fracture characterization using flowback salt-concentration transient[J]. SPE Journal, 2016, 21(1): 233–244. doi: 10.2118/168598-PA
|
[27] |
YANG Liu, WANG Shuo, CAI Jianchao, et al. Main controlling factors of fracturing fluid imbibition in shale fracture network[J]. Capillarity, 2018, 1(1): 1–10. doi: 10.26804/capi.2018.01.01
|
[28] |
JIANG Yun, SHI Yang, XU Guoqing, et al. Experimental study on spontaneous imbibition under confining pressure in tight sandstone cores based on low-field nuclear magnetic resonance measure-ments[J]. Energy & Fuels, 2018, 32(3): 3152–3162.
|
[29] |
ZOLFAGHARI A, TANG Yingzhe, HE Jia, et al. Fracture network characterization by analyzing flowback salts: Scale-up of experimental data[R]. SPE 185078, 2017.
|
1. |
曾文广,王熙,李芳,张江江,曾德智. 稠油井内衬保温油管热损失分析及开采参数优化. 特种油气藏. 2024(01): 144-151 .
![]() | |
2. |
许富强,薛亚斐,宋先知,熊波,莫邵元. 废弃油井转地热井取热性能评价及井型对比. 石油钻探技术. 2024(06): 156-166 .
![]() | |
3. |
唐洋,谢娜,熊浩宇,何胤,黄顺潇. 煤炭地下气化高温喷淋井筒温度应力场研究. 煤田地质与勘探. 2023(11): 13-23 .
![]() | |
4. |
郑晨阳,韩超,周祥. 电加热管柱技术在渤海油田高含蜡油井中的应用. 石油和化工设备. 2023(11): 123-126 .
![]() | |
5. |
刘奕杉,黄顺潇,袁光杰,唐洋. 煤炭地下气化高温井筒温度场研究. 煤炭转化. 2022(01): 58-64 .
![]() | |
6. |
卢迎波,胡鹏程,申婷婷,洪锋,董森淼,马鹏,陈超. 电加热辅助蒸汽吞吐提高水平井水平段动用程度的技术. 大庆石油地质与开发. 2022(02): 167-174 .
![]() | |
7. |
薛继军,杨文波,白哲,上官丰收. 空心杆电加热系统加热效果影响因素分析. 石油机械. 2022(04): 118-123 .
![]() | |
8. |
周晓晖,苏义脑,牛成成,程远方,魏佳. 保护冻土层的真空隔热套管性能试验与数值模拟研究. 石油钻探技术. 2021(03): 21-26 .
![]() | |
9. |
杨立龙. 中深层超稠油油藏SAGD开发热效率分析及提升对策. 特种油气藏. 2021(03): 151-156 .
![]() | |
10. |
李荆江,楼一珊,朱亮. 稠油热采蒸汽驱分层配汽器的结构优化设计. 应用化工. 2021(S1): 420-424+430 .
![]() | |
11. |
王正旭,高德利. 高频电磁加热稠油储层温度分布及其影响因素分析. 石油钻探技术. 2020(01): 90-97 .
![]() | |
12. |
宋志军,汪泓,张铭,张晨剑,张明波. 高温井下温压数据声传直读监测技术. 特种油气藏. 2020(04): 163-167 .
![]() |