QIAO Runwei, ZHANG Shicheng, LI Fengxia, et al. Characteristics of imbibition, displacement, and fluid seepage in high clay content shale condensate gas reservoir in the Fuxing Area [J]. Petroleum Drilling Techniques,2024, 52(1):96-106. DOI: 10.11911/syztjs.2023121
Citation: QIAO Runwei, ZHANG Shicheng, LI Fengxia, et al. Characteristics of imbibition, displacement, and fluid seepage in high clay content shale condensate gas reservoir in the Fuxing Area [J]. Petroleum Drilling Techniques,2024, 52(1):96-106. DOI: 10.11911/syztjs.2023121

Characteristics of Imbibition, Displacement, and Fluid Seepage in High Clay Content Shale Condensate Gas Reservoir in the Fuxing Area

More Information
  • Received Date: May 22, 2023
  • Revised Date: January 14, 2024
  • Available Online: February 05, 2024
  • The Lianggaoshan Formation in the Fuxing Area is a high clay content shale condensate gas reservoir, which is subject to retrograde condensation and liquid locking during well soaking and flowback after volumetric fracturing, which affects the production performance. In order to accurately understand the characteristics of imbibition, displacement and fluid seepage in high clay content shale condensate gas reservoir, and the timing of switching soaking to displacement was optimized, the experiments of gas and water imbibition, flowback and three-phase imbibition and displacement were carried out by selecting the reservoir core. Nuclear magnetic resonance and constant pressure displacement were both used to quantify the water lock damage characteristics of fracturing fluid and the flowable characteristics of condensate oil during the imbibition and displacement process. A liquid lock damage characterization method was established, and reservoir-scale water lock characteristics during well soaking were simulated. The results show that the imbibition recovery of the core in the shale reservoirs during the fracturing imbibition stage is between 50.22% and 57.14%; the lower salinity of the imbibition fluid indicates a lower flowback rate and higher water lock damage rate. The oil lock damage rate is lower than the water lock damage rate. When irreducible water exists, the critical flowable saturation of condensate oil can be reduced by about 20%. With the mitigation of water lock damage near fractures after well soaking as the goal, the recommended well soaking time is 20 to 30 days. The research results provide a theoretical basis for the efficient development of high clay content shale condensate gas reservoir in the Fuxing Area.

  • [1]
    舒志国,周林,李雄,等. 四川盆地东部复兴地区侏罗系自流井组东岳庙段陆相页岩凝析气藏地质特征及勘探开发前景[J]. 石油与天然气地质,2021,42(1):212–223.

    SHU Zhiguo, ZHOU Lin, LI Xiong, et al. Geological characteristics of gas condensate reservoirs and their exploration and development prospect in the Jurassic continental shale of the Dongyuemiao Member of Ziliujing Formation, Fuxing Area, eastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 212–223.
    [2]
    李明阳,黎承银,屈大鹏. 川东南涪陵地区凉高山组凝析油气藏特征及成因[J]. 新疆石油地质,2022,43(4):387–395.

    LI Mingyang, LI Chengyin, QU Dapeng. Characteristics and genesis of condensate reservoirs of Lianggaoshan Formation in Fuling Area, southeastern Sichuan Basin[J]. Xinjiang Petroleum Geology, 2022, 43(4): 387–395.
    [3]
    蒋廷学,肖博,沈子齐,等. 陆相页岩油气水平井穿层体积压裂技术[J]. 石油钻探技术,2023, 51(5):8-14. doi: 10.11911/syztjs.2023078

    JIANG Tingxue, XIAO Bo, SHEN Ziqi, et al. Vertical penetration of network fracturing technology for horizontal wells in continental shale oil and gas[J]. Petroleum Drilling Techniques,2023, 51(5):8-14. doi: 10.11911/syztjs.2023078
    [4]
    翁定为,江昀,易新斌,等. 基于页岩气井返排特征的闷井时间优化方法[J]. 石油钻探技术,2023, 51(5):49-57. doi: 10.11911/syztjs.2023080

    WENG Dingwei, JIANG Yun, YI Xinbin, et al. Optimization of shut-in time in shale gas wells based on the characteristics of fracturing flowback[J]. Petroleum Drilling Techniques,2023, 51(5):49-57. doi: 10.11911/syztjs.2023080
    [5]
    张矿生,薛小佳,陶亮,等. 页岩油水平井体积压裂缝网波及体积评价新方法及应用[J]. 特种油气藏,2023, 30(5):127-134.

    ZHANG Kuangsheng, XUE Xiaojia, TAO Liang, et al. New method for evaluating the volume fracturing fracture network sweep volume in shale oil horizontal wells and its application[J].Special Oil &Gas Reservoirs,2023,30(5):127-134.
    [6]
    范明福,明鑫,明柱平,等. 基质型页岩油储层高导流体积缝网压裂技术[J].断块油气田,2023,30(5):721-727.

    FAN Mingfu, MING Xin, MING Zhuping, et al. Volume fracture network fracturing technology of high conductivity for matrix shale oil reservoir[J]. Fault-Block Oil & Gas Field, 2023, 30(5): 721-727.
    [7]
    许冬进,张滨海,李紫晗,等. 致密气压裂液与储层全过程渗吸伤害规律研究[J]. 长江大学学报(自然科学版),2022,19(1):79–85.

    XU Dongjin, ZHANG Binhai, LI Zihan, et al. Study on the law of imbibition damage in the whole process of tight gas fracturing fluid and reservoir[J]. Journal of Yangtze University (Natural Science Edition), 2022, 19(1): 79–85.
    [8]
    冷静怡,王琳琳. 渗透水化对饱和页岩吸水的影响[J]. 石油科学通报,2020,5(4):560–566.

    LENG Jingyi, WANG Linlin. The osmotic effect on water imbibition in saturated shale formation[J]. Petroleum Science Bulletin, 2020, 5(4): 560–566.
    [9]
    薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6):1075–1081. doi: 10.1016/S1876-3804(18)30110-1

    XUE Huaqing, ZHOU Shangwen, JIANG Yali, et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development, 2018, 45(6): 1075–1081. doi: 10.1016/S1876-3804(18)30110-1
    [10]
    李颖,李茂茂,李海涛,等. 水相渗吸对页岩储层的物化作用机理研究[J]. 油气藏评价与开发,2023,13(1):64–73.

    LI Ying, LI Maomao, LI Haitao, et al. Physicochemical mechanism of water phase imbibition in shale reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 64–73.
    [11]
    朱秀川,胡钦红,蒙冕模,等. 页岩储层渗吸过程中水的微观分布及其气测渗透率动态响应特征[J]. 石油学报,2022,43(4):533–547.

    ZHU Xiuchuan, HU Qinhong, MENG Mianmo, et al. Microscopic distribution of water in the imbibition process of shale reservoir and dynamic response characteristics of its gas logging permeability[J]. Acta Petrolei Sinica, 2022, 43(4): 533–547.
    [12]
    韦青,李治平,白瑞婷,等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术,2016,44(5):109–116.

    WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition in tight sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5): 109–116.
    [13]
    许锋,姚约东,吴承美,等. 温度对吉木萨尔致密油藏渗吸效率的影响研究[J]. 石油钻探技术,2020,48(5):100–104.

    XU Feng, YAO Yuedong, WU Chengmei, et al. Effect of temperature on the imbibition efficiency of the Jimusar tight oil reservoir[J]. Petroleum Drilling Techniques, 2020, 48(5): 100–104.
    [14]
    付兰清. 致密砂岩动态渗吸排驱核磁共振在线实验:以松辽盆地北部扶余油层为例[J]. 大庆石油地质与开发,2023,42(3):66–74.

    FU Lanqing. NMR online experiment for dynamic imbibition drainage of tight sandstone: A case study of Fuyu reservoir in northern Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(3): 66–74.
    [15]
    杨雪,廖锐全,袁旭. 基于核磁共振技术的致密岩心高温高压自发渗吸实验[J]. 大庆石油地质与开发,2023,42(3):58–65.

    YANG Xue, LIAO Ruiquan, YUAN Xu. Spontaneous imbibition experiment in high-temperature and high-pressure for tight cores based on NMR technology[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(3): 58–65.
    [16]
    张奎,刘敦卿,黄波,等. 吉木萨尔芦草沟组致密油储层渗吸驱油特性[J]. 科学技术与工程,2021,21(2):538–545.

    ZHANG Kui, LIU Dunqing, HUANG Bo, et al. Imbibition displacement characteristics in tight oil reservoir of Lucaogou Formation, Jimsar[J]. Science Technology and Engineering, 2021, 21(2): 538–545.
    [17]
    杨发荣,左罗,胡志明,等. 页岩储层渗吸特性的实验研究[J]. 科学技术与工程,2016,16(25):63–66.

    YANG Farong, ZUO Luo, HU Zhiming, et al. Researching the water imbibition characteristic of shale by experiment[J]. Science Technology and Engineering, 2016, 16(25): 63–66.
    [18]
    郭建春,陶亮,胡克剑,等. 页岩储层水相渗吸作用规律实验[J]. 石油学报,2022,43(9):1295–1304.

    GUO Jianchun, TAO Liang, HU Kejian, et al. Experiment on imbibition law of aqueous phase in shale reservoir[J]. Acta Petrolei Sinica, 2022, 43(9): 1295–1304.
    [19]
    李洪,李治平,王香增,等. 表面活性剂对低渗透油藏渗吸敏感因素的影响[J]. 石油钻探技术,2016,44(5):100–103.

    LI Hong, LI Zhiping, WANG Xiangzeng, et al. The effect of surfactants on imbibition-sensitive factors of low-permeability reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(5): 100–103.
    [20]
    王强,赵金洲,胡永全,等. 页岩油储集层压后焖井时间优化方法[J]. 石油勘探与开发,2022,49(3):586–596. doi: 10.1016/S1876-3804(22)60048-X

    WANG Qiang, ZHAO Jinzhou, HU Yongquan, et al. Shut-in time optimization after fracturing in shale oil reservoirs[J]. Petroleum Exploration and Development, 2022, 49(3): 586–596. doi: 10.1016/S1876-3804(22)60048-X
    [21]
    张涛,李相方,杨立峰,等. 关井时机对页岩气井返排率和产能的影响[J]. 天然气工业,2017,37(8):48–60.

    ZHANG Tao, LI Xiangfang, YANG Lifeng, et al. Effects of shut-in timing on flowback rate and productivity of shale gas wells[J]. Natural Gas Industry, 2017, 37(8): 48–60.
    [22]
    钱斌,朱炬辉,杨海,等. 页岩储集层岩心水化作用实验[J]. 石油勘探与开发,2017,44(4):615–621. doi: 10.1016/S1876-3804(17)30070-8

    QIAN Bin, ZHU Juhui, YANG Hai, et al. Experiments on shale reservoirs plugs hydration[J]. Petroleum Exploration and Development, 2017, 44(4): 615–621. doi: 10.1016/S1876-3804(17)30070-8
    [23]
    曾凡辉,张蔷,陈斯瑜,等. 水化作用下页岩微观孔隙结构的动态表征:以四川盆地长宁地区龙马溪组页岩为例[J]. 天然气工业,2020,40(10):66–75.

    ZENG Fanhui, ZHANG Qiang, CHEN Siyu, et al. Dynamic characterization of microscopic pore structures of shale under the effect of hydration: A case study of Longmaxi Formation shale in the Changning area of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 66–75.
    [24]
    王欣,李德旗,姜伟,等. 覆压水化作用对页岩水力压裂缝扩展的影响[J]. 天然气工业,2019,39(6):81–86.

    WANG Xin, LI Deqi, JIANG Wei, et al. Influence of overburden hydration on fracture propagation of shale under three-dimensional stress[J]. Natural Gas Industry, 2019, 39(6): 81–86.
    [25]
    熊健,李羽康,刘向君,等. 水岩作用对页岩岩石物理性质的影响:以四川盆地下志留统龙马溪组页岩为例[J]. 天然气工业,2022,42(8):190–201.

    XIONG Jian, LI Yukang, LIU Xiangjun, et al. Influences of water–rock interaction on the physical and mechanical properties of shales: A case study of the Lower Silurian Longmaxi Formation in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 190–201.
    [26]
    冷钇江,唐洪明,冯于恬,等. 页岩水化作用及其对水相返排的影响:以四川盆地威远地区龙马溪组为例[J]. 中南大学学报(自然科学版),2022,53(9):3681–3693.

    LENG Yijiang, TANG Hongming, FENG Yutian, et al. Shale hydration and its influencing effect on water phase flowback: A case of Longmaxi formation in Weiyuan area, Sichuan Basin[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3681–3693.
    [27]
    李明秋,郭平,姜贻伟,等. 多孔介质中束缚水对凝析油饱和度的影响[J]. 天然气工业,2007,27(6):92–93.

    LI Mingqiu, GUO Ping, JIANG Yiwei, et al. Effect of irreducible water on gas condensate saturation in porous media[J]. Natural Gas Industry, 2007, 27(6): 92–93.
    [28]
    姜贻伟,戚志林,郭平,等. 低渗凝析气藏凝析油临界流动饱和度实验研究[J]. 天然气工业,2006,26(9):96–99.

    JIANG Yiwei, QI Zhilin, GUO Ping, et al. Laboratory study on the critical flow saturation degree of condensate oil in low-permeability condensate gas reservoir[J]. Natural Gas Industry, 2006, 26(9): 96–99.
    [29]
    汤勇,孙雷,戚志林,等. 反凝析油临界流动饱和度的长岩心实验测定方法[J]. 天然气工业,2006,26(7):100–102.

    TANG Yong, SUN Lei, QI Zhilin, et al. Measurement on critical condensate saturation using long core flooding experiment[J]. Natural Gas Industry, 2006, 26(7): 100–102.
    [30]
    李骞,李相方,石军太,等. 凝析气藏临界流动饱和度研究综述[J]. 石油钻采工艺,2010,32(增刊1):36–41.

    LI Qian, LI Xiangfang, SHI Juntai, et al. Development on critical condensate saturation in gas condensate reservoir[J]. Oil Drilling & Production Technology, 2010, 32(supplement 1): 36–41.
    [31]
    李菊花,郑斌,纪磊. 凝析油临界含油饱和度定量表征新方法[J]. 深圳大学学报(理工版),2017,34(1):82–90.

    LI Juhua, ZHENG Bin, JI Lei. A new method of quantitative characterization of condensate critical flow saturation[J]. Journal of Shenzhen University(Science & Engineering), 2017, 34(1): 82–90.
    [32]
    李骞,李相方,昝克,等. 凝析油临界流动饱和度确定新方法[J]. 石油学报,2010,31(5):825–828.

    LI Qian, LI Xiangfang, ZAN Ke, et al. A new method to determine critical condensate saturation[J]. Acta Petrolei Sinica, 2010, 31(5): 825–828.
    [33]
    孙风景,郭平,杜建芬,等. 束缚水和衰竭速度对凝析油临界流动饱和度的影响[J]. 新疆石油地质,2006,27(4):456–458.

    SUN Fengjing, GUO Ping, DU Jianfen, et al. The influences of irreducible water and depletion rate on critical flow saturation of gas condensate[J]. Xinjiang Petroleum Geology, 2006, 27(4): 456–458.
    [34]
    LI Kewen, FIROOZABADI A. Phenomenological modeling of critical condensate saturation and relative permeabilities in gas/condensate systems[J]. SPE Journal, 2000, 5(2): 138–147. doi: 10.2118/56014-PA
    [35]
    REIS P K P, CARVALHO M S. Pore-scale compositional modeling of gas-condensate flow: Effects of interfacial tension and flow velocity on relative permeability[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108454. doi: 10.1016/j.petrol.2021.108454
    [36]
    GB/T 28912—2012 岩石中两相流体相对渗透率测定方法 [S].

    GB/T 28912—2012 Test method for two phase relative permeability in rock[S].
    [37]
    LOMELAND F, EBELTOFT E, THOMAS W H. A new versatile relative permeability correlation: proceedings of the International Symposium of the Society of Core Analysts, Toronto, Canada, 21-25 August, 2005[C].
    [38]
    FAYERS F J, MATTHEWS J D. Evaluation of normalized stone’s methods for estimating three-phase relative permeabilities[J]. SPE Journal, 1984, 24(2): 224–232.
    [39]
    ALIZADEH A H, PIRI M. The effect of saturation history on three-phase relative permeability: an experimental study[J]. Water Resources Research, 2014, 50(2): 1636–1664. doi: 10.1002/2013WR014914
  • Related Articles

    [1]KUANG Yuchun, ZHANG Tao, LIN Wei. Fabrication and Application of Drill String Dynamics Experiment Bench for Small-Scale Horizontal Wells[J]. Petroleum Drilling Techniques, 2024, 52(4): 15-23. DOI: 10.11911/syztjs.2024066
    [2]DI Qinfeng, YOU Mingming, LI Tianxin, ZHOU Xing, YANG Heyuan, WANG Wenchang. Simulation and Analysis of Dynamic Characteristics of Drilling String in Extra-Deep Wells[J]. Petroleum Drilling Techniques, 2024, 52(2): 108-117. DOI: 10.11911/syztjs.2024029
    [3]WANG Man, YUAN Miao, MIN Rui, YUAN Tao. Numerical Study on the Dynamic Characteristics and Ultrasonic Enhancement of Cavitation Bubbles under Self-Excited Oscillating Jet[J]. Petroleum Drilling Techniques, 2023, 51(6): 43-49. DOI: 10.11911/syztjs.2023058
    [4]NIU Hongbo, YU Zhenglian, SUN Jing, XU Jiafang. The Interaction between Gas Hydrate Kinetics Inhibitors and Water Molecules[J]. Petroleum Drilling Techniques, 2019, 47(4): 29-34. DOI: 10.11911/syztjs.2019037
    [5]LIAO Maolin, ZHOU Yingcao, SU Yinao, LIAN Zhilong, JIANG Hongwei. A Study of the Dynamic Analysis and Design Method of Deepwater Drilling String Systems[J]. Petroleum Drilling Techniques, 2019, 47(2): 56-62. DOI: 10.11911/syztjs.2019031
    [6]GUANG Xinjun, WANG Minsheng. Key Production Test Technologies for Offshore Natural Gas Hydrate[J]. Petroleum Drilling Techniques, 2016, 44(5): 45-51. DOI: 10.11911/syztjs.201605008
    [7]DENG Yong, CHEN Mian, JIN Yan, ZOU Daiwu. Investigation of the Dynamic Characteristics and Energy Consumption for Breaking Rocks Using the Impact Load[J]. Petroleum Drilling Techniques, 2016, 44(3): 27-32. DOI: 10.11911/syztjs.201603005
    [8]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
  • Cited by

    Periodical cited type(33)

    1. 刘承诚. 基于KPI的裸眼封隔器应用效能评价. 石油矿场机械. 2025(01): 19-23 .
    2. 丁士东,庞伟,周珺,杨德锴,何同. 顺北油气田超深井分段完井技术. 石油钻探技术. 2024(02): 66-71 . 本站查看
    3. 黄梁帅. 超深强底水断溶体油藏精细注水技术优化. 粘接. 2024(08): 126-129 .
    4. 王龙,万小勇,林仁奎,李冬梅,徐燕东,朱苏阳. 断控型缝洞气藏酸压规模与无阻流量的关系研究. 钻采工艺. 2024(05): 172-178 .
    5. 蔡计光,王川,房好青,苟波,王琨,任冀川. 全缝长酸蚀填砂裂缝导流能力评价方法. 石油钻探技术. 2023(01): 78-85 . 本站查看
    6. 耿宇迪,蒋廷学,刘志远,罗志锋,王汉青. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究. 石油钻探技术. 2023(02): 81-89 . 本站查看
    7. 王支柱,汪文星. 酸压技术在伊拉克X油田的应用研究. 天津科技. 2023(05): 26-29 .
    8. 宋周成,段永贤,何思龙,汪鑫,李伟,陈毅,徐国伟,刘浩. 富满油田超深碳酸盐岩酸压液体体系优化组合及应用. 钻采工艺. 2023(02): 139-145 .
    9. 考佳玮,金衍,韦世明. 缝洞型碳酸盐岩储层人工裂缝扩展数值模拟. 石油科学通报. 2023(03): 303-317 .
    10. 杨兆中,彭擎东,王振普,李小刚,朱静怡,秦杨. 微胶囊固体酸酸化压裂技术应用及展望. 特种油气藏. 2023(03): 1-8 .
    11. 时贤,葛晓鑫,张燕明,黄维安,战永平,古永红,牟春国. 致密白云岩储层加砂压裂裂缝导流能力实验研究. 油气地质与采收率. 2023(04): 167-172 .
    12. 史文洋,杨志豪,朱庆杰,陶磊,白佳佳. 双分支断溶体储层合采水平井压力响应特征. 常州大学学报(自然科学版). 2023(05): 40-52 .
    13. 林永茂,缪尉杰,刘林,李永明,邱玲. 川西南靖和1井茅口组立体酸压技术. 石油钻探技术. 2022(02): 105-112 . 本站查看
    14. 刘芳慧,张世昆,曹耐. 强渗透缓速酸液体系研究与评价. 钻井液与完井液. 2022(03): 365-372 .
    15. 纪成,何天舒,赵兵,罗志锋,陈翔. 纤维强化凝胶合成与性能评价. 钻井液与完井液. 2022(04): 495-500 .
    16. 王辉. 洗象池群改造工艺研究与应用. 江汉石油职工大学学报. 2022(06): 13-15 .
    17. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看
    18. 曾庆辉,何东博,朱大伟,崔明月,陈彦东,张鹏. 哈法亚油田孔隙性石灰岩储层酸压先导性试验. 石油钻采工艺. 2021(02): 226-232 .
    19. 王伟峰,杨浩,冯青,寇双燕,黄子俊. 深穿透解堵技术适应性油藏数值模拟研究. 石油化工应用. 2021(05): 11-17 .
    20. 王栋. 酸压用咪唑啉缓蚀剂的合成及性能研究. 化学反应工程与工艺. 2021(01): 65-72 .
    21. 齐宁,陈国彬,李振亮,梁冲,何龙. 基于分步算法的裂缝性碳酸盐岩油藏大尺度酸化数值模拟. 石油学报. 2020(03): 348-362+371 .
    22. 罗明良,巩锦程,战永平,司晓冬,罗帅,李钦朋. 环境友好型交联酸的性能及其反应动力学. 精细化工. 2020(04): 834-840 .
    23. 李春月,房好青,牟建业,黄燕飞,胡文庭. 碳酸盐岩储层缝内暂堵转向压裂实验研究. 石油钻探技术. 2020(02): 88-92 . 本站查看
    24. 安娜,罗攀登,李永寿,方裕燕,焦克波. 碳酸盐岩储层深度酸压用固体颗粒酸的研制. 石油钻探技术. 2020(02): 93-97 . 本站查看
    25. 李双贵,于洋,樊艳芳,曾德智. 顺北油气田超深井井身结构优化设计. 石油钻探技术. 2020(02): 6-11 . 本站查看
    26. 陈修平,李双贵,于洋,周丹. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术. 石油钻探技术. 2020(02): 12-16 . 本站查看
    27. 操银香,李柏颉,郭媛. 高压注水扩容在缝洞型碳酸盐岩油藏中的应用——以塔河S1井为例. 油气藏评价与开发. 2020(02): 49-53 .
    28. 杨万有,郑春峰,李昂,尹莎莎,郭晓飞,赵展,卢勇. 可控冲击波致裂海上油层可行性分析. 钻采工艺. 2020(01): 38-41+9 .
    29. 王建云,杨晓波,王鹏,范红康. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术. 石油钻探技术. 2020(03): 8-15 . 本站查看
    30. 李子甲,吴霞,黄文强. 深层碳酸盐岩储层有机酸深穿透酸压工艺. 科学技术与工程. 2020(20): 8146-8151 .
    31. 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 . 本站查看
    32. 雷林,张龙胜,熊炜. 渝东南地区茅口组气藏大石1HF井酸压工艺技术研究. 油气藏评价与开发. 2020(05): 84-90 .
    33. 游利军,孟森,高新平,康毅力,陈明君,邵佳新. 碳酸盐岩储气库储层微粒运移对酸化的响应. 断块油气田. 2020(05): 676-680 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (107) PDF downloads (59) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return