FENG Wangsheng, SONG Weibin, ZHENG Huikai, LI Zongyao, XIE Chengbin. The Influence Law of Shear Rate on the Thickening Time of Cement Slurry[J]. Petroleum Drilling Techniques, 2016, 44(6): 74-77. DOI: 10.11911/syztjs.201606012
Citation: FENG Wangsheng, SONG Weibin, ZHENG Huikai, LI Zongyao, XIE Chengbin. The Influence Law of Shear Rate on the Thickening Time of Cement Slurry[J]. Petroleum Drilling Techniques, 2016, 44(6): 74-77. DOI: 10.11911/syztjs.201606012

The Influence Law of Shear Rate on the Thickening Time of Cement Slurry

More Information
  • Received Date: August 10, 2015
  • Revised Date: June 07, 2016
  • Shear rate is an important influence on the thickening time of cement slurry, and the determination of the real thickening time is significant for safety in cementing engineering. By establishing mathematical models for the shear rate of cement slurry under two thickening statuses in the borehole and in the lab, the thickening test was conducted under different shear rates (at 30℃ and 80℃) to identify the influence law of shearing rate on the thickening time of cement slurry. At 30℃, the deviation of thickening time is more than 2 h with shear rate of 22-652/s, and the thickening time is shorter at a low shear rate. At 80℃, the deviation of thickening time is less than 1 h with shear rates of 177-885/s, and the thickening time is shorter at a high shear rate. Research results showed that the thickening test at a rotation speed of 150 r/min could effectively simulate the thickening time in most cementing operations. As for cementing operations involving large-sized surface casing and small annulus, suitable shear rates should be used in accordance with specific conditions to perform thickening tests of cement slurry, so as to determine the thickening time in cementing operations accurately and ensure the safety of cementing operations.
  • [1]
    夏村.石油勘查系统固井工程现状分析及对策建议[J].石油钻探技术,1994,22(4):52-55. XIA Cun.Current situation analysis and countermeasures of well cementing in oil exploration system[J].Petroleum Drilling Techniques,1994,22(4):52-55.
    [2]
    何世明,刘崇建,黄桢,等.温度与压力对水泥浆稠化时间的影响规律[J].钻井液与完井液,1999,16(2):22-24. HE Shiming,LIU Chongjian,HUANG Zhen,et al.Influence pattern of temperature and pressure on cement slurry thickening time[J].Drilling Fluid & Completion Fluid,1999,16(2):22-24.
    [3]
    ORBAN J A,PARCEVAUX P A,GUILOT D J.Specific mixing energy:a key factor for cement slurry quality[R].SPE 15578,1986.
    [4]
    VIDICK B.Critical mixing parameters for control of cement slurryqualit[J].SPE 18895,1989.
    [5]
    安本清,于玲玲,豆宁辉,等.沙特B区块固井水泥浆提前稠化规律探讨[J].石油钻探技术,2010,38(5):56-59. AN Benqing,YU Lingling,DOU Ninghui,et al.Investigation of cement slurry thickening in advance in Block B of Saudi Arabia[J].Petroleum Drilling Techniques,2010,38(5):56-59.
    [6]
    KWELLE S O,MOFUNLEWI S S.The effect of mixing energy and shear rate on the thickening time of cement slurry[J].Leonardo Journal of Sciences,2008,7(13):78-89.
    [7]
    PURVIS D L,MUELLER D T,DAWSON J C,et al.Thickening time test apparatus provides method of simulation actual shear rate history ofoilwell cements[R].SPE 26576,1993.
    [8]
    PURVIS D L,CLERGY J S.Eliminating the unknowns of primary cementing with on-site verification and post-job analysis[R].SPE 23991,1992.
    [9]
    REED T D,PILEHAVRI A A.A new model for laminar,transitional,and turbulent flow of drilling muds[R].SPE 25456,1993.
    [10]
    ISO 10426-1:2009 Petroleum and natural gas industries:cements and materials for well cementing:specification[S].
    [11]
    KEMBLOWSKI Z,SÈK J,BUDZYŃSKI P.The concept of a rotational rheometer with helical screw impeller[J].Rheologica Acta,1988,27(1):82-91.
    [12]
    LORD D L.Helical screwrheometer:A new tool for stimulation fluid evaluation[R].SPE 182131988.
    [13]
    GB/T 19139-2012油井水泥试验方法[S]. GB/T 19139-2012 Testing of well cements[S].
  • Related Articles

    [1]LI Zhaoying, YANG Xu, YANG Jie, XIE Tianjing, LI Jiangtao, FENG Zhigang. Synthesis and Property Evaluation of an Amphoteric Polymer Fracturing Fluid Thickener[J]. Petroleum Drilling Techniques, 2023, 51(2): 109-115. DOI: 10.11911/syztjs.2023044
    [2]XIONG Min. Origin Analysis and Elimination of the S-Shaped Strength Development Curve of Cement Slurry[J]. Petroleum Drilling Techniques, 2018, 46(3): 39-43. DOI: 10.11911/syztjs.2018064
    [3]ZHANG Junjiang, DU Linlin, YING Hailing, ZHANG Bin. Synthesis and Field Tests of High Temperature Resistant and Salt Tolerant Acid ThickenerTP-17[J]. Petroleum Drilling Techniques, 2017, 45(6): 93-98. DOI: 10.11911/syztjs.201706017
    [4]LIU Wei, ZENG Min, MA Kaihua, TAO Qian. The Study and Property Evaluation of a Lipophilic Cement Slurry With LQ Emulsion[J]. Petroleum Drilling Techniques, 2017, 45(1): 39-44. DOI: 10.11911/syztjs.201701007
    [5]Wang Xiaojing, Kong Xiangming, Zeng Min, Xu Chunhu, Zhao Zhiheng. Laboratory Research on a New Styrene Acrylic Latex Cement Slurry System[J]. Petroleum Drilling Techniques, 2014, 42(2): 80-84. DOI: 10.3969/j.issn.1001-0890.2014.02.016
    [6]Qu Jia, Yan Siming, Xu Jianhua. Application of Corrosion Resistant Latex Cement Slurry in Yuanba Area[J]. Petroleum Drilling Techniques, 2013, 41(3): 94-98. DOI: 10.3969/j.issn.1001-0890.2013.03.018
    [7]Yu Yongjin, Jin Jianzhou, Liu Shuoqiong, Yuan Jinping, Xu Ming. Research and Application of Thermostable Cement Slurry[J]. Petroleum Drilling Techniques, 2012, 40(5): 35-39. DOI: 10.3969/j.issn.1001-0890.2012.05.008
    [8]Zhao Baohui, Zou Jianlong, Liu Aiping, Lü Guangming, Gao Yonghui, Xu Peng. Performance Evaluation and Application of Novel Retarder BCR-260L[J]. Petroleum Drilling Techniques, 2012, 40(2): 55-58. DOI: 10.3969/j.issn.1001-0890.2012.02.011
    [9]Li Zaoyuan, Zhou Chao, Liu Wei, Wang Yan, Guo Xiaoyang. Laboratory Study on the Cement Slurry System with Short Waiting on Cement Time at Low Temperature[J]. Petroleum Drilling Techniques, 2012, 40(2): 46-50. DOI: 10.3969/j.issn.1001-0890.2012.02.009
  • Cited by

    Periodical cited type(13)

    1. 高健,汪海阁,宋世贵,宋先知,杨培福,张彦龙. 中国石油工程作业智能支持中心模式改革与初探. 钻采工艺. 2025(01): 37-45 .
    2. 史配铭,贺会锋,朱明明,孟凡金,屈艳平,王玉鹏. 苏里格南部气田Φ152.4 mm小井眼大斜度井快速钻井关键技术. 石油工业技术监督. 2024(09): 51-56 .
    3. 叶成,高世峰,鲁铁梅,屈沅治,戎克生,王常亮,任晗. 玛18井区水平井井壁失稳机理及强封堵钻井液技术研究. 石油钻采工艺. 2023(01): 38-46 .
    4. 刘召友,孙永强,郭百利. 苏里格气田?165.1mm小井眼二开一趟钻优快钻井关键技术. 西部探矿工程. 2023(12): 26-30 .
    5. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
    6. 王国娜,张海军,孙景涛,张巍,曲大孜,郝晨. 大港油田大型井丛场高效钻井技术优化与应用. 石油钻探技术. 2022(02): 51-57 . 本站查看
    7. 范家伟,袁野,李绍华,王彦秋,黄兰,尚钲凯,李君,陶正武. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田. 2022(02): 194-198 .
    8. 魏绍蕾,苏映宏,黄学斌,肖玉茹. 玛湖油田开发经验对特低渗-致密油藏开发的借鉴意义. 当代石油石化. 2021(02): 33-38 .
    9. 王忠良,周扬,文晓峰,龙斌,丁凡,陈邵维. 长庆油田小井眼超长水平段水平井钻井技术. 石油钻探技术. 2021(05): 14-18 . 本站查看
    10. 郝亚龙,葛云华,崔猛,纪国栋,殷鸽,黄家根. 钻头选型中的地层分层技术. 断块油气田. 2020(02): 248-252 .
    11. 史配铭,薛让平,王学枫,王万庆,石崇东,杨勇. 苏里格气田致密气藏水平井优快钻井技术. 石油钻探技术. 2020(05): 27-33 . 本站查看
    12. 张雄,余进,毛俊,刘祖磊. 准噶尔盆地玛东油田水平井高性能油基钻井液技术. 石油钻探技术. 2020(06): 21-27 . 本站查看
    13. 张瑞平,万教育,李彬,付仕,马静,刘冬. 直井段偏移对后期定向钻井作业的影响分析. 探矿工程(岩土钻掘工程). 2019(07): 28-33 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (8511) PDF downloads (13254) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return