OUYANG Weiping, ZHANG Mian, SUN Hu, ZHANG Yunyi, CHI Xiaoming. Numerical Simulation of Oil Displacement by Fracturing Imbibition in Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143-149. DOI: 10.11911/syztjs.2021083
Citation: OUYANG Weiping, ZHANG Mian, SUN Hu, ZHANG Yunyi, CHI Xiaoming. Numerical Simulation of Oil Displacement by Fracturing Imbibition in Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143-149. DOI: 10.11911/syztjs.2021083

Numerical Simulation of Oil Displacement by Fracturing Imbibition in Horizontal Shale Oil Wells

More Information
  • Received Date: April 11, 2020
  • Revised Date: June 08, 2021
  • Available Online: June 21, 2021
  • To improve the production prediction accuracy of fractured horizontal shale oil wells and optimize parameters such as shut-in time and fracturing fluid volume, a mathematical model of oil-water two-phase flow considering the whole process of fracturing fluid injection, shut-in imbibition, and well-opening production was built. Its numerical solution was obtained with the control volume finite element method, and the oil-water displacement between the matrix and fractures by imbibition was simulated to obtain the dynamic changes of the oil-water pressure field, velocity field, production, and water cut. The characteristics of oil displacement by fracturing imbibition were analyzed, and the shut-in time and fracturing fluid volume were optimized. In addition, the effects of matrix permeability and fracture network complexity on oil displacement by imbibition were examined. The research results show that in the case of a larger capillary force and longer shut-in time, the water cut is lower and the imbibition stimulation effect is more noticeable. The increase in fracturing fluid volume can promote the production of oil displacement by imbibition, while it will raise the water cut at the same time. Thus, the reasonable fracturing fluid volume can be determined by the increments of water cut and production. The optimal shut-in time is affected by the capillary force, matrix permeability, and fracture network complexity. To be specific, the capillary force and matrix permeability determine the imbibition velocity, while the fracture network complexity regulates the imbibition area. The model built in this paper can provide references for the optimal design of horizontal shale oil well fracturing.
  • [1]
    李相方,冯东,张涛,等. 毛细管力在非常规油气藏开发中的作用及应用[J]. 石油学报,2020,41(12):1719–1733. doi: 10.7623/syxb202012024

    LI Xiangfang, FENG Dong, ZHANG Tao, et al. The role and its application of capillary force in the development of unconventional oil and gas reservoirs and its application[J]. Acta Petrolei Sinica, 2020, 41(12): 1719–1733. doi: 10.7623/syxb202012024
    [2]
    刘煜,杨建民,王丹,等. 清洁压裂液返排液渗吸驱油效果影响因素评价[J]. 断块油气田,2020,27(5):666–670.

    LIU Yu, YANG Jianmin, WANG Dan, et al. Evaluation of influencing factors on imbibition displacement effect of clean fracturing flowback fluids[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 666–670.
    [3]
    王桂娟.低渗透砂岩油藏渗吸规律及特征研究[D].青岛: 中国石油大学(华东), 2016.

    WANG Guijuan. Study on the law and characteristics of imbibition in low permeability sandstone reservoir[D]. Qingdao: China University of Petroleum (East China), 2016.
    [4]
    苏煜彬,林冠宇,韩悦. 表面活性剂对致密砂岩储层自发渗吸驱油的影响[J]. 断块油气田,2017,24(5):691–694.

    SU Yubin, LIN Guanyu, HAN Yue. Influence of surfactant on spontaneous imbibition in tight sandstone reservoir and its application[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 691–694.
    [5]
    刘俣含,赵志成,石善志,等. 基于正交试验的致密油渗吸影响因素分析[J]. 石油钻采工艺,2020,42(2):189–194.

    LIU Yuhan, ZHAO Zhicheng, SHI Shanzhi, et al. Analyzing the factors influencing the imbibition of tight oil based on orthogonal experiment[J]. Oil Drilling & Production Technology, 2020, 42(2): 189–194.
    [6]
    YASSIN M R, DEHGHANPOUR H, BEGUM M, et al. Evaluation of imbibition oil recovery in the Duvernay Formation[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(2): 257–272.
    [7]
    李耀华,宋岩,徐兴友,等. 鄂尔多斯盆地延长组7段凝灰质页岩油层的润湿性及自发渗吸特征[J]. 石油学报,2020,41(10):1229–1237. doi: 10.7623/syxb202010007

    LI Yaohua, SONG Yan, XU Xingyou, et al. Wettability and spontaneous imbibition characteristics of the tuffaceous shale reservoirs in the member 7 of Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2020, 41(10): 1229–1237. doi: 10.7623/syxb202010007
    [8]
    许锋,姚约东,吴承美,等. 温度对吉木萨尔致密油藏渗吸效率的影响研究[J]. 石油钻探技术,2020,48(5):100–104. doi: 10.11911/syztjs.2020114

    XU Feng, YAO Yaodong, WU Chengmei, et al. Effect of temperature on the imbibition efficiency of the Jimusar tight oil reservoir[J]. Petroleum Drilling Techniques, 2020, 48(5): 100–104. doi: 10.11911/syztjs.2020114
    [9]
    李兆敏,赵艳玲,王海涛,等. 注入水矿化度对盐间页岩油储层物性影响研究[J]. 特种油气藏,2020,27(2):131–137.

    LI Zhaomin, ZHAO Yanling, WANG Haitao, et al. Effects of injection water salinity on physical properties of inter-salt shale oil reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 131–137.
    [10]
    朱维耀,鞠岩,赵明,等. 低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J]. 石油学报,2002,23(6):56–59. doi: 10.3321/j.issn:0253-2697.2002.06.012

    ZHU Weiyao, JU Yan, ZHAO Ming, et al. Spontaneous imbibition mechanism of flow through porous media and waterflooding in low-permeability fractured sandstone reservoir[J]. Acta Petrolei Sinica, 2002, 23(6): 56–59. doi: 10.3321/j.issn:0253-2697.2002.06.012
    [11]
    王家禄,刘玉章,陈茂谦,等. 低渗透油藏裂缝动态渗吸机理实验研究[J]. 石油勘探与开发,2009,36(1):86–90. doi: 10.3321/j.issn:1000-0747.2009.01.011

    WANG Jialu, LIU Yuzhang, CHEN Maoqian, et al. Experimental study on dynamic imbibition mechanism of low permeability reservoirs[J]. Petroleum Exploration and Development, 2009, 36(1): 86–90. doi: 10.3321/j.issn:1000-0747.2009.01.011
    [12]
    韦青,李治平,白瑞婷,等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术,2016,44(5):109–116.

    WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition in tight sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5): 109–116.
    [13]
    谷潇雨,蒲春生,黄海,等. 渗透率对致密砂岩储集层渗吸采油的微观影响机制[J]. 石油勘探与开发,2017,44(6):948–954. doi: 10.1016/S1876-3804(17)30107-6

    GU Xiaoyu, PU Chunsheng, HUANG Hai, et al. Micro-influencing mechanism of permeability on spontaneous imbibition recovery for tight sandstone reservoirs[J]. Petroleum Exploration and Development, 2017, 44(6): 948–954. doi: 10.1016/S1876-3804(17)30107-6
    [14]
    党海龙,王小锋,段伟,等. 鄂尔多斯盆地裂缝性低渗透油藏渗吸驱油研究[J]. 断块油气田,2017,24(5):687–690.

    DANG Hailong, WANG Xiaofeng, DUAN Wei, et al. Study on imbibition flooding in fractured low-permeability reservoir of Ordos Basin[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 687–690.
    [15]
    吴润桐,杨胜来,王敉邦,等. 致密砂岩静态渗吸实验研究[J]. 辽宁石油化工大学学报,2017,37(3):24–29. doi: 10.3969/j.issn.1672-6952.2017.03.006

    WU Runtong, YANG Shenglai, WANG Mibang, et al. Experimental study on static imbibition of tight sandstone[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2017, 37(3): 24–29. doi: 10.3969/j.issn.1672-6952.2017.03.006
    [16]
    屈雪峰,雷启鸿,高武彬,等. 鄂尔多斯盆地长7致密油储层岩心渗吸试验[J]. 中国石油大学学报(自然科学版),2018,42(2):102–109.

    QU Xuefeng, LEI Qihong, GAO Wubin, et al. Experimental study on imbibition of Chang 7 tight oil cores in Erdos Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(2): 102–109.
    [17]
    ZHAO Zhihong, TAO Liang, ZHAO Yuhang, et al. Mechanism of water imbibition in organic shale: an experimental study[R]. SPE 202699, 2020.
    [18]
    WANG Mingyuan, ARGÜELLES-VIVAS F J, ABEYKOON G A, et al. The effect of phase distribution on imbibition mechanisms for enhanced oil recovery in tight reservoirs[R]. SPE 200431, 2020.
    [19]
    雷征东,覃斌,刘双双,等. 页岩气藏水力压裂渗吸机理数值模拟研究[J]. 西南石油大学学报(自然科学版),2017,39(2):118–124.

    LEI Zhengdong, QIN Bin, LIU Shuangshuang, et al. Imbibition mechanism of hydraulic fracturing in shale gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(2): 118–124.
    [20]
    李宪文,刘锦,郭钢,等. 致密砂岩储层渗吸数学模型及应用研究[J]. 特种油气藏,2017,24(6):79–83. doi: 10.3969/j.issn.1006-6535.2017.06.015

    LI Xianwen, LIU Jin, GUO Gang, et al. Mathematical model of imbibition and its application in tight sandstone reservoir[J]. Special Oil & Gas Reservoirs, 2017, 24(6): 79–83. doi: 10.3969/j.issn.1006-6535.2017.06.015
    [21]
    王敬,刘慧卿,夏静,等. 裂缝性油藏渗吸采油机理数值模拟[J]. 石油勘探与开发,2017,44(5):761–770.

    WANG Jing, LIU Huiqing, XIA Jing, et al. Mechanism simulation of oil displacement by imbibition in fractured reservoirs[J]. Petroleum Exploration and Development, 2017, 44(5): 761–770.
    [22]
    王睿. 致密油藏压后闷井蓄能机理与规律的数值模拟研究[D]. 北京: 中国石油大学(北京), 2019.

    WANG Rui. Numerial simulation study on mechanism and law of energy storage in shut-in schedule after fracturing of tight oil[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [23]
    王付勇,曾繁超,赵久玉. 低渗透/致密油藏驱替–渗吸数学模型及其应用[J]. 石油学报,2020,41(11):1396–1405. doi: 10.7623/syxb202011009

    WANG Fuyong, ZENG Fanchao, ZHAO Jiuyu. A mathematical model of displacement and imbibition of low-permeability tight reservoirs and its application[J]. Acta Petrolei Sinica, 2020, 41(11): 1396–1405. doi: 10.7623/syxb202011009
    [24]
    欧阳伟平,孙贺东,韩红旭. 致密气藏水平井多段体积压裂复杂裂缝网络试井解释新模型[J]. 天然气工业,2020,40(3):74–81. doi: 10.3787/j.issn.1000-0976.2020.03.009

    OUYANG Weiping, SUN Hedong, HAN Hongxu. A new well test interpretation model for complex fracture networks in horizontal wells with multi-stage volume fracturing in tight gas reservoirs[J]. Natural Gas Industry, 2020, 40(3): 74–81. doi: 10.3787/j.issn.1000-0976.2020.03.009
    [25]
    CHEN Zhangxin, HUAN Guanren, MA Yuanle. Computational methods for multiphase flows in porous media[M]. Dallas: Society for Industrial and Applied Mathematics, 2006.
  • Related Articles

    [1]DI Qinfeng, YOU Mingming, LI Tianxin, ZHOU Xing, YANG Heyuan, WANG Wenchang. Simulation and Analysis of Dynamic Characteristics of Drilling String in Extra-Deep Wells[J]. Petroleum Drilling Techniques, 2024, 52(2): 108-117. DOI: 10.11911/syztjs.2024029
    [2]LIU Xiushan. Principal Normal Angle of Borehole Trajectory and Its Equation[J]. Petroleum Drilling Techniques, 2019, 47(3): 103-106. DOI: 10.11911/syztjs.2019052
    [3]LIAO Yong, TAN Pan, SHI Wenrui, FENG Aiguo, HE Haoran. An Evaluation Method for Gas Production Property for Shale Gas Reservoirs in the Fuling Area[J]. Petroleum Drilling Techniques, 2018, 46(5): 69-75. DOI: 10.11911/syztjs.2018112
    [4]WANG Chao, LI Jun, LIU Gonghui, ZHANG Tao, XU Xiaofeng. An Analytical Method for Determining the Motion Characteristics and Abnormal Conditions of Near-Bit Bottom Hole Assembly[J]. Petroleum Drilling Techniques, 2018, 46(2): 50-57. DOI: 10.11911/syztjs.2018026
    [5]TAN Wei, ZHANG Hengrong, WANG Lijuan, DING Lei, WU Jinbo. A New Method to Determine the Resistivity of Mixed Liquids in Water-flooded Layers of Oilfields by Water-flooding Development[J]. Petroleum Drilling Techniques, 2017, 45(1): 120-126. DOI: 10.11911/syztjs.201701020
    [6]Bu Yuhuan, Song Wenyu, He Yingjun, Shen Zhaochao. Discussion of a Method for Evaluating Cementing Quality with Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2015, 43(5): 49-55. DOI: 10.11911/syztjs.201505009
    [7]Jiang Tingxue, Bian Xiaobing, Su Yuan, Liu Shuanglian, Wei Ran. A New Method for Evaluating Shale Fracability Index and Its Application[J]. Petroleum Drilling Techniques, 2014, 42(5): 16-20. DOI: 10.11911/syztjs.201405003
    [8]Bai Yuhu, Yang Hao, Chen Guihua, Feng Ruyong. An Uncertainty Analysis Method on Typical Production Decline Curve for Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(4): 97-100. DOI: 10.3969/j.issn.1001-0890.2013.04.021
    [9]Fu Yarong. Determination Method for the Landing Depth of Coaxial Dual Hollow Rod[J]. Petroleum Drilling Techniques, 2012, 40(4): 107-110. DOI: 10.3969/j.issn.1001-0890.2012.04.021
    [10]Fan Honghai, Feng Guangqing, Xiao Wei, Ma Jinliang, Ye Zhi, Zhao Cong. New Approach for Real-Time Bit Wear Monitoring Based on the Theory of MSE[J]. Petroleum Drilling Techniques, 2012, 40(3): 116-120. DOI: 10.3969/j.issn.1001-0890.2012.03.024
  • Cited by

    Periodical cited type(8)

    1. 隋明炜,高尚芳,刘建安,郑伟,宋伟,李全忠. 石楼西混合水循环压裂液体系应用. 当代化工. 2021(02): 335-338+343 .
    2. 史璨,林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨. 石油科学通报. 2021(01): 92-113 .
    3. 刘威. 大牛地气田薄储层控缝高压裂工艺技术. 断块油气田. 2021(02): 284-288 .
    4. 王娜,王蕾,龚浩研,李军,解亚鹏,李文洪. 自交联乳液混合水体系性能评价及其在鄂北致密气储层的应用. 能源化工. 2021(02): 48-53 .
    5. 陈昊,毕凯琳,张军,刘虎子,张胜,冯玉军. 非常规油气开采压裂用减阻剂研究进展. 油田化学. 2021(02): 347-359 .
    6. 闫林,陈福利,王志平,阎逸群,曹瑾健,王坤琪. 我国页岩油有效开发面临的挑战及关键技术研究. 石油钻探技术. 2020(03): 63-69 . 本站查看
    7. 房娜,姜光宏,程奇,李广龙,王双龙. 裂缝性油藏不同见水模式下的注水优化. 断块油气田. 2020(05): 633-637 .
    8. 袁琴,隋明炜,王艺衡,敖科. 混合水用水相痕量示踪剂室内评价及应用. 当代化工. 2020(11): 2491-2494 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (793) PDF downloads (149) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return