LIN Yongmao, MIAO Weijie, LIU Lin, LI Yongming, QIU Ling. 3D Acid Fracturing Technology in Maokou Formation of Well Jinghe 1 in Southwestern Sichuan[J]. Petroleum Drilling Techniques, 2022, 50(2): 105-112. DOI: 10.11911/syztjs.2022009
Citation: LIN Yongmao, MIAO Weijie, LIU Lin, LI Yongming, QIU Ling. 3D Acid Fracturing Technology in Maokou Formation of Well Jinghe 1 in Southwestern Sichuan[J]. Petroleum Drilling Techniques, 2022, 50(2): 105-112. DOI: 10.11911/syztjs.2022009

3D Acid Fracturing Technology in Maokou Formation of Well Jinghe 1 in Southwestern Sichuan

More Information
  • Received Date: January 12, 2021
  • Revised Date: December 28, 2021
  • Available Online: February 21, 2022
  • Wufeng–Longmaxi Formation is the main shale-gas production horizon in southwestern Sichuan, and good gas indication shows in Maokou Formation in logging data from wells drilled through. To make a confirmation of the gas potential of the formation, Well Jinghe 1 was drilled as a preliminary prospecting well. In light of the short effective acidizing distance and limited stimulation volume from acid fracturing in Maokou Formation of an adjacent area, the fracture and pore development characteristics of the drilled strata in Well Jinghe 1 were analyzed. A three-dimensional (3D) acid fracturing technology was researched from the aspects of full 3D fracture propagation, the acid fracturing fluid system, and supporting operation parameters. The research results show that fine sectioning by multiple packers accompanied by large-displacement can reach the stimulation effect aiming at realizing connection of fractured bodies. The three-stage alternative injection of fracturing fluid and gelled acid can increase the stimulation volume of fractured bodies and the distances of acid etched fractures. This can met the requirement of deep penetrating and non-uniform etching in the horizontal direction as well as the high production of fine sections in the vertical direction. The production of Well Jinghe 1 was 12.52×104m3/d after 3D acid fracturing, which was 38% higher than that with prepad acid fracturing. The post-fracturing fitting results indicated that fractured bodies were well connected. The successful application of 3D acid fracturing technology in Maokou Formation of Well Jinghe 1 provides a new idea for the development of gas reservoirs in Maokou Formation, Qixia Formation, and Dengying Formation in southwestern Sichuan.
  • [1]
    朱华,杨光,苑保国,等. 四川盆地常规天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学,2018,29(10):1475–1485. doi: 10.11764/j.issn.1672-1926.2018.08.011

    ZHU Hua, YANG Guang, YUAN Baoguo, et al. Geological conditions, resource potential and exploration direction of conventional gas in Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1475–1485. doi: 10.11764/j.issn.1672-1926.2018.08.011
    [2]
    洪海涛,田兴旺,孙奕婷,等. 四川盆地海相碳酸盐岩天然气富集规律[J]. 中国地质,2020,47(1):99–110. doi: 10.12029/gc20200108

    HONG Haitao, TIAN Xingwang, SUN Yiting, et al. Hydrocarbon enrichment regularity of marine carbonate in Sichuan Basin[J]. Geology in China, 2020, 47(1): 99–110. doi: 10.12029/gc20200108
    [3]
    徐姣,孙庆莉,段杰,等. 四川盆地东部涪陵—巴南地区茅口组储层特征及预测[J]. 天然气勘探与开发,2019,42(3):86–94.

    XU Jiao, SUN Qingli, DUAN Jie, et al. Predicting reservoir characteristics of Maokou Formation, Fuling-Ba’nan area, eastern Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(3): 86–94.
    [4]
    雷林,张龙胜,熊炜. 渝东南地区茅口组气藏大石1HF井酸压工艺技术研究[J]. 油气藏评价与开发,2020,10(5):84–90.

    LEI Lin, ZHANG Longsheng, XIONG Wei. Acid fracturing technology of Maokou Formation in Well-Dashi-1HF, southeastern Chongqing[J]. Reservoir Evaluation and Development, 2020, 10(5): 84–90.
    [5]
    张倩,李年银,李长燕,等. 中国海相碳酸盐岩储层酸化压裂改造技术现状及发展趋势[J]. 特种油气藏,2020,27(2):1–7. doi: 10.3969/j.issn.1006-6535.2020.02.001

    ZHANG Qian, LI Nianyin, LI Changyan, et al. Overview and trend of acid-fracturing technology for marine carbonate reservoirs in China[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 1–7. doi: 10.3969/j.issn.1006-6535.2020.02.001
    [6]
    钟森,潘宝风,王兴文,等. 元坝气田酸化暂堵剂研究及应用[J]. 油气藏评价与开发,2017,7(1):61–65. doi: 10.3969/j.issn.2095-1426.2017.01.012

    ZHONG Sen, PAN Baofeng, WANG Xingwen, et al. Research and application of acidification temporary plugging agent in Yuanba Gas Field[J]. Reservoir Evaluation and Development, 2017, 7(1): 61–65. doi: 10.3969/j.issn.2095-1426.2017.01.012
    [7]
    刘建坤,蒋廷学,周林波,等. 碳酸盐岩储层多级交替酸压技术研究[J]. 石油钻探技术,2017,45(1):104–111.

    LIU Jiankun, JIANG Tingxue, ZHOU Linbo, et al. Multi-stage alternative acid fracturing technique in carbonate reservoirs stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104–111.
    [8]
    林永茂,何颂根,杨永华,等. 喷砂射孔降破技术在超深海相碳酸盐岩的应用[J]. 断块油气田,2019,26(5):653–656.

    LIN Yongmao, HE Songgen, YANG Yonghua, et al. Application of sandblast perforation in ultra-deep marine carbonate reservoir[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 653–656.
    [9]
    何颂根,龙永平,李永明,等. 超深海相碳酸盐岩储层可压性主控因素[J]. 断块油气田,2020,27(5):573–578.

    HE Songgen, LONG Yongping, LI Yongming, et al. Main controlling factors of fracability in ultra-deep marine carbonate reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 573–578.
    [10]
    储铭汇. 致密碳酸盐岩储层复合缝网酸压技术研究及矿场实践: 以大牛地气田下古生界马五5碳酸盐岩储层为例[J]. 石油钻采工艺,2017,39(2):237–243.

    CHU Minghui. Study on composite fracture-network acid fracturing technology for tight carbonate reservoirs and its field application: a case study on Mawu5 carbonate reservoir of Lower Paleozoic in Daniudi Gasfield[J]. Oil Drilling & Production Technology, 2017, 39(2): 237–243.
    [11]
    李耕. 胶凝酸稠化剂在方解石中的滞留伤害研究[D]. 成都: 西南石油大学, 2017.

    LI Geng. A study on retention of gelled acid thickener in calcite[D]. Chengdu: Southwest Petroleum University, 2017.
    [12]
    焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发,2019,46(3):552–558.

    JIAO Fangzheng. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 552–558.
    [13]
    侯帆,许艳艳,张艾,等. 超深高温碳酸盐岩自生酸深穿透酸压工艺研究与应用[J]. 钻采工艺,2018,41(1):35–37. doi: 10.3969/J.ISSN.1006-768X.2018.01.11

    HOU Fan, XU Yanyan, ZHANG Ai, et al. Research and application of deep-penetration acid-fracturing by authigenic acid in extra-deep high-temperature carbonate rocks[J]. Drilling & Production Technology, 2018, 41(1): 35–37. doi: 10.3969/J.ISSN.1006-768X.2018.01.11
    [14]
    刘壮,郭建春,马辉运,等. 提升高温气井酸压有效缝长方法:以川西地区栖霞组为例[J]. 天然气地球科学,2019,30(12):1694–1700. doi: 10.11764/j.issn.1672-1926.2019.12.005

    LIU Zhuang, GUO Jianchun, MA Huiyun, et al. Simulation study of the approach to enhance acid penetration distance in high temperature gas well: case study of Qixia Formation, western Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(12): 1694–1700. doi: 10.11764/j.issn.1672-1926.2019.12.005
    [15]
    胡文庭,何晓波,李楠,等. 塔河油田外围超深碳酸盐岩储层深度酸压改造技术研究与应用[J]. 石油地质与工程,2015,29(1):115–117. doi: 10.3969/j.issn.1673-8217.2015.01.036

    HU Wenting, HE Xiaobo, LI Nan, et al. Study and application of deep acid fracturing technology for ultradeep carbonate reservoir in the periphery of Tahe Oilfield[J]. Petroleum Geology and Engineering, 2015, 29(1): 115–117. doi: 10.3969/j.issn.1673-8217.2015.01.036
    [16]
    蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术,2019,47(3):140–147. doi: 10.11911/syztjs.2019058

    JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058
    [17]
    张朝举. 川东北海相碳酸盐岩气藏酸化压裂技术及应用研究[D]. 成都: 西南石油大学, 2009.

    ZHANG Chaoju. The technology and application of marine carbonate gas reservoir acid fracturing in northeast Sichuan[D]. Chengdu: Southwest Petroleum University, 2009.
    [18]
    郭建春,苟波,秦楠,等. 深层碳酸盐岩储层改造理念的革新:立体酸压技术[J]. 天然气工业,2020,40(2):61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007

    GUO Jianchun, GOU Bo, QIN Nan, et al. An innovative concept on deep carbonate reservoir stimulation: three-dimensional acid fracturing technology[J]. Natural Gas Industry, 2020, 40(2): 61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007
    [19]
    安娜,罗攀登,李永寿,等. 碳酸盐岩储层深度酸压用固体颗粒酸的研制[J]. 石油钻探技术,2020,48(2):93–97. doi: 10.11911/syztjs.2020017

    AN Na, LUO Pandeng, LI Yongshou, et al. Development of solid granular acid for the deep acid-fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 93–97. doi: 10.11911/syztjs.2020017
    [20]
    张搏,李晓,王宇. 排量对水力压裂网络扩展影响的试验研究[J]. 工程地质学报,2018,26(6):1516–1522.

    ZHANG Bo, LI Xiao, WANG Yu. Experimental study on effect of pump rate on fracture network propagation[J]. Journal of Engineering Geology, 2018, 26(6): 1516–1522.
    [21]
    邓鹏. 顺北碳酸盐岩酸化压裂试验与裂缝特征研究[D]. 重庆: 重庆大学, 2019.

    DENG Peng. Experimental investigation on acidizing fracturing and crack characteristics of carbonate rocks in Block Shunbei[D]. Chongqing: Chongqing University, 2019.
    [22]
    蔡卓林,赵续荣,南荣丽,等. 暂堵转向结合高排量体积重复压裂技术[J]. 断块油气田,2020,27(5):661–665.

    CAI Zhuolin, ZHAO Xurong, NAN Rongli, et al. Volume re-fracturing technology of temporary plugging and diverting with high displacement[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 661–665.
    [23]
    马淑芬. 多级交替注入闭合酸压设计模拟与应用[D]. 成都: 西南石油大学, 2012.

    MA Shufen. Multistage alternate acid fracturing design simulation and application[D]. Chengdu: Southwest Petroleum University, 2012.
  • Related Articles

    [1]QIAO Runwei, ZHANG Shicheng, LI Fengxia, WANG Fei, LI Ning. Characteristics of Imbibition, Displacement, and Fluid Seepage in High Clay Content Shale Condensate Gas Reservoir in the Fuxing Area[J]. Petroleum Drilling Techniques, 2024, 52(1): 96-106. DOI: 10.11911/syztjs.2023121
    [2]WENG Dingwei, JIANG Yun, YI Xinbin, HE Chunming, CHE Mingguang, ZHU Yihui. Optimization of Shut-in Time in Shale Gas Wells Based on the Characteristics of Fracturing Flowback[J]. Petroleum Drilling Techniques, 2023, 51(5): 49-57. DOI: 10.11911/syztjs.2023080
    [3]ZHANG Kuangsheng, QI Yin, XUE Xiaojia, TAO Liang, CHEN Wenbin, WU An’an. CO2 Regional Enhanced Volumetric Fracturing Technology for Shale Oil Horizontal Wells in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 15-22. DOI: 10.11911/syztjs.2023091
    [4]CHEN Zhiming, ZHAO Pengfei, CAO Nai, LIAO Xinwei, WANG Jianan, LIU Hui. Fracturing Parameters Optimization of Horizontal Wells in Shale Reservoirsduring "Well Fracturing-Soaking-Producing"[J]. Petroleum Drilling Techniques, 2022, 50(2): 30-37. DOI: 10.11911/syztjs.2022005
    [5]ZHANG Kuangsheng, TANG Meirong, TAO Liang, DU Xianfei. Horizontal Well Volumetric Fracturing Technology Integrating Fracturing, Energy Enhancement, and Imbibition for Shale Oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9-15. DOI: 10.11911/syztjs.2022003
    [6]OUYANG Weiping, ZHANG Mian, SUN Hu, ZHANG Yunyi, CHI Xiaoming. Numerical Simulation of Oil Displacement by Fracturing Imbibition in Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143-149. DOI: 10.11911/syztjs.2021083
    [7]XU Feng, YAO Yuedong, WU Chengmei, XU Zhang, ZHANG Jinfeng, ZHAO Guoxiang. Effect of Temperature on the Imbibition Efficiency of the Jimusar Tight Oil Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(5): 100-104. DOI: 10.11911/syztjs.2020114
    [8]FENG Wangsheng, SONG Weibin, ZHENG Huikai, LI Zongyao, XIE Chengbin. The Influence Law of Shear Rate on the Thickening Time of Cement Slurry[J]. Petroleum Drilling Techniques, 2016, 44(6): 74-77. DOI: 10.11911/syztjs.201606012
    [9]He Tao, Guo Jianchun, Lu Cong, Jing Yuquan. Optimization of Shut-in Time between the First and Second Fracturing by means of Pressure Decline Analysis[J]. Petroleum Drilling Techniques, 2015, 43(2): 110-115. DOI: 10.11911/syztjs.201502019
    [10]Liang Dan, Zeng Xianglin, Fang Maojun. The Effect Analysis of Shut-in Coning Control[J]. Petroleum Drilling Techniques, 2012, 40(6): 67-70. DOI: 10.3969/j.issn.1001-0890.2012.06.014
  • Cited by

    Periodical cited type(10)

    1. 黄婷,薛小佳,康博,董奇,周大伟,徐全胜. 重复压裂非均匀孔隙压力场对裂缝延伸的影响. 断块油气田. 2023(03): 475-479+522 .
    2. 李贤胜,邱小雪,陈明江,李玮,刘向君,杨孛. 基于等效介质理论的页岩声波数值模拟方法研究. 特种油气藏. 2023(03): 63-72 .
    3. 孔祥伟,卾玄吉,齐天俊,陈青,任勇,王素兵,李亭,刘宇. 页岩气井复合暂堵泵压数学模型及影响因素. 特种油气藏. 2023(04): 156-162 .
    4. 袁飞宇,唐潮,张超,付亚飞,陈波. 团簇效应对裂缝连通性的影响. 特种油气藏. 2023(06): 107-113 .
    5. 俞天喜,王雷,陈蓓蓓,孙锡泽,李圣祥,朱振龙. 基于盐溶和蠕变作用的含盐储层裂缝导流能力变化规律研究与应用. 特种油气藏. 2023(06): 157-164 .
    6. Guang-Long Sheng,Hui Zhao,Jia-Ling Ma,Hao Huang,Hai-Yang Deng,Wen-Tao Zhan,Yu-Yang Liu. A new approach for flow simulation in complex hydraulic fracture morphology and its application: Fracture connection element method. Petroleum Science. 2023(05): 3002-3012 .
    7. 刘红磊,徐胜强,朱碧蔚,周林波,黄亚杰,李保林. 盐间页岩油体积压裂技术研究与实践. 特种油气藏. 2022(02): 149-156 .
    8. 蔡萌,唐鹏飞,魏旭,刘宇,张浩,张宝岩,耿丹丹. 松辽盆地古龙页岩油复合体积压裂技术优化. 大庆石油地质与开发. 2022(03): 156-164 .
    9. 侯亚伟,刘超,徐中波,安玉华,李景玲. 多层水驱开发油田采收率快速预测方法. 石油钻探技术. 2022(05): 82-87 . 本站查看
    10. 王雪飞,王素玲,侯峰,王明,李雪梅,孙丹丹. 基于CFD-DEM方法的迂曲裂缝中支撑剂运移关键影响因素分析. 特种油气藏. 2022(06): 150-158 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (383) PDF downloads (45) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return