Citation: | ZHANG Jian, XIAO Yuhan, ZHOU Zhongyi, et al. Downhole WOB prediction method based on CNN-Bi-LSTM network optimized by TDCSO [J]. Petroleum Drilling Techniques, 2024, 52(5):82−90. DOI: 10.11911/syztjs.2024098 |
In order to accurately predict downhole weight on bit (WOB), improve drilling efficiency, and reduce drilling cost, a hybrid model combining bidirectional long short-term memory network (Bi-LSTM) and convolutional neural network (CNN) was established. The model used the trigonometric function-driven particle swarm optimization (TDCSO) method for hyperparameter optimization, so as to improve the accuracy of WOB prediction. The public data sets of Well FORGE 58−32 and Well FORGE 58−62 in Utah were used to verify the established model, and the model performance was evaluated by the mean absolute error (MAE), root mean square error (RMSE), coefficient of determination, and mean square error (MSE). The results show that the proposed TDCSO-CNN-Bi-LSTM model achieves excellent results in three key indicators of MAE, MSE, and RMSE, and the coefficient of determination was higher than 0.98, which is significantly better than the existing methods such as LSTM, GRU, CNN-LSTM and CNN-Bi-LSTM, etc. The study shows that the proposed TDCSO-CNN-Bi-LSTM model has excellent accuracy in downhole WOB prediction and enables real-time monitoring. It can be integrated with an automated drilling system to achieve precise control of WOB. This not only improves drilling efficiency but also reduces drilling cost, which has important practical application value for future drilling operations.
[1] |
FU Jianhong, REN Zhipeng, BAI Jing, et al. The friction-reducing principle and application of the drill string with a hydroos-cillator[J]. Journal of Petroleum Science & Engineering, 2018, 165: 453–461.
|
[2] |
XU Baolong, LIU Songyong, LI Hongsheng. Drill string’s axial force transfer law in slide directional drilling in underground coal mine[J]. Tunnelling and Underground Space Technology, 2022, 130: 104701. doi: 10.1016/j.tust.2022.104701
|
[3] |
WANG Chao, LIU Gonghui, LI Jun, et al. New methods of eliminating downhole WOB measurement error owing to temperature variation and well pressure differential[J]. Journal of Petroleum Science & Engineering, 2018, 171: 1420–1432.
|
[4] |
吴泽兵,谷亚冰,姜雯,等. 基于遗传优化算法的井底钻压智能预测模型[J]. 石油钻采工艺,2023,45(2):151–159.
WU Zebing, GU Yabing, JIANG Wen, et al. Intelligent prediction models of downhole weight on bit based on genetic optimization algorithm[J]. Oil Drilling & Production Technology, 2023, 45(2): 151–159.
|
[5] |
李臻,宋先知,李根生,等. 基于双输入序列到序列模型的井眼轨迹实时智能预测方法[J]. 石油钻采工艺,2023,45(4):393–403.
LI Zhen, SONG Xianzhi, LI Gensheng, et al. Real-time intelligent prediction of well trajectory based on dual-input sequence-to-sequence model[J]. Oil Drilling & Production Technology, 2023, 45(4): 393–403.
|
[6] |
王海涛,王建华,邱晨,等. 基于双向长短期记忆循环神经网络和条件随机场的钻井工况识别方法[J]. 石油钻采工艺,2023,45(5):540–547.
WANG Haitao, WANG Jianhua, QIU Chen, et al. Recognition method of drilling conditions based on bi-directional long-short term memory recurrent neural network and conditional random field[J]. Oil Drilling & Production Technology, 2023, 45(5): 540–547.
|
[7] |
张矿生,宫臣兴,陆红军,等. 基于集成学习的井漏智能预警模型及智能推理方法[J]. 石油钻采工艺,2023,45(1):47–54.
ZHANG Kuangsheng, GONG Chenxing, LU Hongjun, et al. Intelligent early warning model and intelligent reasoning method based on integrated learning for loss circulation[J]. Oil Drilling & Production Technology, 2023, 45(1): 47–54.
|
[8] |
OYEDERE M, GRAY K. Torque-on-bit (TOB) prediction and optimization using machine learning algorithms[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103623. doi: 10.1016/j.jngse.2020.103623
|
[9] |
徐海萍. 基于ARIMA-GRNN模型的油井产量动态预测[J]. 世界石油工业,2022,29(1):64–69.
XU Haiping. Dynamic prediction of oil well yield based on the ARIMA-GRNN model[J]. World Oil Industry, 2022, 29(1): 64–69.
|
[10] |
陈宇光. 基于组合模型的天然气管道短期负荷预测[J]. 石油化工自动化,2024,60(2):20–24.
CHEN Yuguang. Short-term load forecasting of natural gas pipeline based on the combined model[J]. Petrochemical Industry Automation, 2024, 60(2): 20–24.
|
[11] |
黄小龙,刘东涛,宋吉明,等. 基于大数据及人工智能的钻速实时优化技术[J]. 石油钻采工艺,2021,43(4):442–448.
HUANG Xiaolong, LIU Dongtao, SONG Jiming, et al. Real-time ROP optimization technology based on big data and artificial intelligence[J]. Oil Drilling & Production Technology, 2021, 43(4): 442–448.
|
[12] |
樊冬艳,杨灿,孙海,等. 基于时间序列相似性与机器学习方法的页岩气井产量预测[J]. 中国石油大学学报(自然科学版),2024,48(3):119–126. doi: 10.3969/j.issn.1673-5005.2024.03.013
FAN Dongyan, YANG Can, SUN Hai, et al. Shale gas well production forecasting based on time sequence similarity and machine learning methods[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(3): 119–126. doi: 10.3969/j.issn.1673-5005.2024.03.013
|
[13] |
肖京男,汪志明,魏建光,等. 改进LSSVM在水平井产能预测中的应用[J]. 石油钻探技术,2010,38(6):95–98. doi: 10.3969/j.issn.1001-0890.2010.06.021
XIAO Jingnan, WANG Zhiming, WEI Jianguang, et al. Application of LSSVM improved horizontal well productivity prediction[J]. Petroleum Drilling Techniques, 2010, 38(6): 95–98. doi: 10.3969/j.issn.1001-0890.2010.06.021
|
[14] |
PAN Shaowei, BO Yang, WANG Shukai, et al. Oil well production prediction based on CNN-LSTM model with self-attention mechanism[J]. Energy, 2023, 284: 128701. doi: 10.1016/j.energy.2023.128701
|
[15] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
[16] |
O’SHEA K, NASH R. An introduction to convolutional neural networks[DB/OL]. (2015-12-02)[2024-06-10]. https://arxiv.org/abs/1511.08458.
O’SHEA K,NASH R. An introduction to convolutional neural networks[DB/OL]. (2015-12-02)[2024-06-10]. https://arxiv.org/abs/1511.08458.
|
[17] |
ELMAZ F, EYCKERMAN R, CASTEELS W, et al. CNN-LSTM architecture for predictive indoor temperature modeling[J]. Building and Environment, 2021, 206: 108327. doi: 10.1016/j.buildenv.2021.108327
|
[18] |
孙伟峰,冯剑寒,张德志,等. 结合LSTM自编码器与集成学习的井漏智能识别方法[J]. 石油钻探技术,2024,52(3):61–67. doi: 10.11911/syztjs.2024006
SUN Weifeng, FENG Jianhan, ZHANG Dezhi, et al. An intelligent lost circulation recognition method using LSTM-autoencoder and ensemble learning[J]. Petroleum Drilling Techniques, 2024, 52(3): 61–67. doi: 10.11911/syztjs.2024006
|
[19] |
韩克宁,王伟,樊冬艳,等. 基于产量递减与LSTM耦合的常压页岩气井产量预测[J]. 油气藏评价与开发,2023,13(5):647–656.
HAN Kening, WANG Wei, FAN Dongyan, et al. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647–656.
|
[20] |
CHEN Zhiming, PENG Dong, WANG Tianyi, et al. Pressure transient analysis in shale wells with heterogeneous fractures by using a deep learning based surrogate model[R]. IPTC 22333, 2022.
|
[21] |
RHANOUI M, MIKRAM M, YOUSFI S, et al. A CNN-BiLSTM model for document-level sentiment analysis[J]. Machine Learning and Knowledge Extraction, 2019, 1(3): 832–847. doi: 10.3390/make1030048
|
[22] |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. Piscataway, NJ: IEEE Press, 1995: 1942-1948.
|
[23] |
JANG J S R, SUN C T, MIZUTANI E. Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [J]. IEEE Transactions on Automatic Control, 1997, 42(10): 1482–1484. doi: 10.1109/TAC.1997.633847
|
[24] |
MOAYEDI H, RAFTARI M, SHARIFI A, et al. Optimization of ANFIS with GA and PSO estimating α ratio in driven piles[J]. Engineering with Computers, 2020, 36(1): 227–238. doi: 10.1007/s00366-018-00694-w
|
[25] |
周俊,陈璟华,刘国祥,等. 粒子群优化算法中惯性权重综述[J]. 广东电力,2013,26(7):6–12.
ZHOU Jun, CHEN Jinghua, LIU Guoxiang, et al. Review of inertia weight in particle swarm optimization algorithm[J]. Guangdong Electric Power, 2013, 26(7): 6–12.
|
[26] |
王鹏飞,任丽佳,高燕. 基于改进收缩因子的粒子群优化算法[J]. 电子科技,2022,35(5):14–18.
WANG Pengfei, REN Lijia, GAO Yan. PSO algorithm based on improved contraction factor[J]. Electronic Science and Technology, 2022, 35(5): 14–18.
|
[27] |
王俊伟,汪定伟. 粒子群算法中惯性权重的实验与分析[J]. 系统工程学报,2005,20(2):194–198.
WANG Junwei, WANG Dingwei. Experiment and analysis of inertia weight in particle swarm optimization[J]. Journal of Systems Engineering, 2005, 20(2): 194–198.
|
[28] |
MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
|
[29] |
NASH G, MOORE J. Utah FORGE: logs and data from deep well 58-32 (MU-ESW1): 1006[R]. Salt Lake City: Energy and Geoscience Institute at the University of Utah, 2018.
|
[1] | ZHANG Ximin. Optimization Study of Cluster Well Platform Deployment Based on Genetic Algorithm[J]. Petroleum Drilling Techniques, 2024, 52(4): 44-50. DOI: 10.11911/syztjs.2024080 |
[2] | WU Zebing, YUAN Ruofei, ZHANG Wenxi, LIU Jiale. Optimization Design of Interface Structure for PDC Composite Sheets Based on Multi-Objective Genetic Algorithms[J]. Petroleum Drilling Techniques, 2024, 52(4): 24-33. DOI: 10.11911/syztjs.2024068 |
[3] | ZHOU Jun, SHI Ye, LIANG Guangchuan, PENG Cao. Optimization of Partial-Pressure Periodic Water Injection in Oilfield under Time-of-Use Electricity Price[J]. Petroleum Drilling Techniques, 2024, 52(3): 106-111. DOI: 10.11911/syztjs.2024016 |
[4] | WANG Zhiyuan, LIANG Peizhi, CHEN Keshan, ZHANG Zhi, ZHANG Jianbo, SUN Baojiang. Multi-Solution Analysis and Optimization Strategy for Intelligent Well Killing in Deep Formation[J]. Petroleum Drilling Techniques, 2024, 52(2): 136-145. DOI: 10.11911/syztjs.2024034 |
[5] | FENG Jin, CHI Shaolin, ZHANG Manlai, CHEN Wei, HUANG Xinyu. Optimal Design of a Downhole Seismic Generator[J]. Petroleum Drilling Techniques, 2020, 48(5): 120-126. DOI: 10.11911/syztjs.2020117 |
[6] | WANG Peng, TIAN Yi, FENG Ding, TU Yiliu. Optimization Design Method for Casing String Combination Based on Heuristic Algorithm[J]. Petroleum Drilling Techniques, 2020, 48(2): 42-48. DOI: 10.11911/syztjs.2020011 |
[7] | LI Wei, LIU Wenchen, ZHOU Xianhai, NI Hongjian, YU Fan, ZANG Yanbin. 3D Horizontal Wellbore Trajectory Optimization Design Method in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(2): 17-23. DOI: 10.11911/syztjs.2018041 |
[8] | Jiang Tingxue, Bian Xiaobing, Yuan Kai, Zhou Linbo. A New Method in Staged Fracturing Design Optimization for Shale Gas Horizontal Wells[J]. Petroleum Drilling Techniques, 2014, 42(2): 1-6. DOI: 10.3969/j.issn.1001-0890.2014.02.001 |
[9] | Jin Yequan, Wang Maolin. PDC Bit Drilling Parameter Optimization Design Integrating Cost and Drilling Rate[J]. Petroleum Drilling Techniques, 2012, 40(5): 13-16. DOI: 10.3969/j.issn.1001-0890.2012.05.003 |
[10] | Liu Bing, Xu Xingping, Li Jizhi. Application of SQP Algorithm to Optimize Perforation in Horizontal Wells[J]. Petroleum Drilling Techniques, 2012, 40(3): 97-101. DOI: 10.3969/j.issn.1001-0890.2012.03.020 |
1. |
刘承诚. 基于KPI的裸眼封隔器应用效能评价. 石油矿场机械. 2025(01): 19-23 .
![]() | |
2. |
丁士东,庞伟,周珺,杨德锴,何同. 顺北油气田超深井分段完井技术. 石油钻探技术. 2024(02): 66-71 .
![]() | |
3. |
黄梁帅. 超深强底水断溶体油藏精细注水技术优化. 粘接. 2024(08): 126-129 .
![]() | |
4. |
王龙,万小勇,林仁奎,李冬梅,徐燕东,朱苏阳. 断控型缝洞气藏酸压规模与无阻流量的关系研究. 钻采工艺. 2024(05): 172-178 .
![]() | |
5. |
蔡计光,王川,房好青,苟波,王琨,任冀川. 全缝长酸蚀填砂裂缝导流能力评价方法. 石油钻探技术. 2023(01): 78-85 .
![]() | |
6. |
耿宇迪,蒋廷学,刘志远,罗志锋,王汉青. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究. 石油钻探技术. 2023(02): 81-89 .
![]() | |
7. |
王支柱,汪文星. 酸压技术在伊拉克X油田的应用研究. 天津科技. 2023(05): 26-29 .
![]() | |
8. |
宋周成,段永贤,何思龙,汪鑫,李伟,陈毅,徐国伟,刘浩. 富满油田超深碳酸盐岩酸压液体体系优化组合及应用. 钻采工艺. 2023(02): 139-145 .
![]() | |
9. |
考佳玮,金衍,韦世明. 缝洞型碳酸盐岩储层人工裂缝扩展数值模拟. 石油科学通报. 2023(03): 303-317 .
![]() | |
10. |
杨兆中,彭擎东,王振普,李小刚,朱静怡,秦杨. 微胶囊固体酸酸化压裂技术应用及展望. 特种油气藏. 2023(03): 1-8 .
![]() | |
11. |
时贤,葛晓鑫,张燕明,黄维安,战永平,古永红,牟春国. 致密白云岩储层加砂压裂裂缝导流能力实验研究. 油气地质与采收率. 2023(04): 167-172 .
![]() | |
12. |
史文洋,杨志豪,朱庆杰,陶磊,白佳佳. 双分支断溶体储层合采水平井压力响应特征. 常州大学学报(自然科学版). 2023(05): 40-52 .
![]() | |
13. |
林永茂,缪尉杰,刘林,李永明,邱玲. 川西南靖和1井茅口组立体酸压技术. 石油钻探技术. 2022(02): 105-112 .
![]() | |
14. |
刘芳慧,张世昆,曹耐. 强渗透缓速酸液体系研究与评价. 钻井液与完井液. 2022(03): 365-372 .
![]() | |
15. |
纪成,何天舒,赵兵,罗志锋,陈翔. 纤维强化凝胶合成与性能评价. 钻井液与完井液. 2022(04): 495-500 .
![]() | |
16. |
王辉. 洗象池群改造工艺研究与应用. 江汉石油职工大学学报. 2022(06): 13-15 .
![]() | |
17. |
路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 .
![]() | |
18. |
曾庆辉,何东博,朱大伟,崔明月,陈彦东,张鹏. 哈法亚油田孔隙性石灰岩储层酸压先导性试验. 石油钻采工艺. 2021(02): 226-232 .
![]() | |
19. |
王伟峰,杨浩,冯青,寇双燕,黄子俊. 深穿透解堵技术适应性油藏数值模拟研究. 石油化工应用. 2021(05): 11-17 .
![]() | |
20. |
王栋. 酸压用咪唑啉缓蚀剂的合成及性能研究. 化学反应工程与工艺. 2021(01): 65-72 .
![]() | |
21. |
齐宁,陈国彬,李振亮,梁冲,何龙. 基于分步算法的裂缝性碳酸盐岩油藏大尺度酸化数值模拟. 石油学报. 2020(03): 348-362+371 .
![]() | |
22. |
罗明良,巩锦程,战永平,司晓冬,罗帅,李钦朋. 环境友好型交联酸的性能及其反应动力学. 精细化工. 2020(04): 834-840 .
![]() | |
23. |
李春月,房好青,牟建业,黄燕飞,胡文庭. 碳酸盐岩储层缝内暂堵转向压裂实验研究. 石油钻探技术. 2020(02): 88-92 .
![]() | |
24. |
安娜,罗攀登,李永寿,方裕燕,焦克波. 碳酸盐岩储层深度酸压用固体颗粒酸的研制. 石油钻探技术. 2020(02): 93-97 .
![]() | |
25. |
李双贵,于洋,樊艳芳,曾德智. 顺北油气田超深井井身结构优化设计. 石油钻探技术. 2020(02): 6-11 .
![]() | |
26. |
陈修平,李双贵,于洋,周丹. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术. 石油钻探技术. 2020(02): 12-16 .
![]() | |
27. |
操银香,李柏颉,郭媛. 高压注水扩容在缝洞型碳酸盐岩油藏中的应用——以塔河S1井为例. 油气藏评价与开发. 2020(02): 49-53 .
![]() | |
28. |
杨万有,郑春峰,李昂,尹莎莎,郭晓飞,赵展,卢勇. 可控冲击波致裂海上油层可行性分析. 钻采工艺. 2020(01): 38-41+9 .
![]() | |
29. |
王建云,杨晓波,王鹏,范红康. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术. 石油钻探技术. 2020(03): 8-15 .
![]() | |
30. |
李子甲,吴霞,黄文强. 深层碳酸盐岩储层有机酸深穿透酸压工艺. 科学技术与工程. 2020(20): 8146-8151 .
![]() | |
31. |
丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 .
![]() | |
32. |
雷林,张龙胜,熊炜. 渝东南地区茅口组气藏大石1HF井酸压工艺技术研究. 油气藏评价与开发. 2020(05): 84-90 .
![]() | |
33. |
游利军,孟森,高新平,康毅力,陈明君,邵佳新. 碳酸盐岩储气库储层微粒运移对酸化的响应. 断块油气田. 2020(05): 676-680 .
![]() |