WANG Zhiyuan, LIANG Peizhi, CHEN Keshan, et al. Multi-solution analysis and optimization strategy for intelligent well killing in deep formation [J]. Petroleum Drilling Techniques,2024, 52(2):136-145. DOI: 10.11911/syztjs.2024034
Citation: WANG Zhiyuan, LIANG Peizhi, CHEN Keshan, et al. Multi-solution analysis and optimization strategy for intelligent well killing in deep formation [J]. Petroleum Drilling Techniques,2024, 52(2):136-145. DOI: 10.11911/syztjs.2024034

Multi-Solution Analysis and Optimization Strategy for Intelligent Well Killing in Deep Formation

More Information
  • Received Date: December 13, 2023
  • Revised Date: March 05, 2024
  • Available Online: April 07, 2024
  • Complex geological conditions, long drilling cycles, and difficult wellbore pressure control are common problems during oil and gas resource development in deep formations. Intelligent well killing methods, combined with multi-source real-time information feedback, can predict and update gas-liquid distribution and pressure change law in the wellbore in real time. However, the combination of different correction coefficients may derive the same pressure calculation result, which leads to the problem of multiple solutions of the model. By analyzing the evolution law of the spatial morphology of the solution at different historical time nodes, it was revealed that the essence of the multi-solution of the model came from the imperfection of the model training under the constraint of sparse data. The global model training optimization method based on real-time information sequence and the dynamic random population training optimization method were established correspondingly, and their search ability and applicable conditions for the global optimal solutions of the model were tested. The results show that the global training optimization method can achieve accurate control in the early stages of well killing, but the calculation time is long. The dynamic random population training optimization method is slightly different from the expected value in the early stage of well killing, but the calculation is rapid. According to available computing resources, a suitable training optimization method can be selected to achieve deep learning of the gas-liquid flow law in the wellbore under the constraints of multi-source real-time data.

  • [1]
    王志刚,王稳石,张立烨,等. 万米科学超深井钻完井现状与展望[J]. 科技导报,2022,40(13):27–35.

    WANG Zhigang, WANG Wenshi, ZHANG Liye, et al. Present situation and prospect of drilling and completion of 10000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13): 27–35.
    [2]
    汪海阁,黄洪春,纪国栋,等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1–11.

    WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3): 1–11.
    [3]
    李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57.

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57.
    [4]
    汪海阁,葛云华,石林. 深井超深井钻完井技术现状、挑战和 “十三五” 发展方向[J]. 天然气工业,2017,37(4):1–8. doi: 10.3787/j.issn.1000-0976.2017.04.001

    WANG Haige, GE Yunhua, SHI Lin. Technologies in deep and ultra-deep well drilling: present status, challenges and future trend in the 13th Five-Year Plan period (2016-2020)[J]. Natural Gas Industry, 2017, 37(4): 1–8. doi: 10.3787/j.issn.1000-0976.2017.04.001
    [5]
    苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
    [6]
    伍贤柱,胡旭光,韩烈祥,等. 井控技术研究进展与展望[J]. 天然气工业,2022,42(2):133–142.

    WU Xianzhu, HU Xuguang, HAN Liexiang, et al. Research progress and prospect of well control technology[J]. Natural Gas Industry, 2022, 42(2): 133–142.
    [7]
    娄文强,王志远,孙大林,等. 基于压力—速度解耦的深水井筒多相流高精度数值模拟新算法[J]. 天然气工业,2024,44(2):132–144.

    LOU Wenqiang, WANG Zhiyuan, SUN Dalin, et al. New algorithm for high-precision numerical simulation of multiphase flow in deepwater wellbore based on pressure-velocity decoupling[J]. Natural Gas Industry, 2024, 44(2): 132–144.
    [8]
    李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.

    LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.
    [9]
    何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1–8.

    HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar Basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5): 1–8.
    [10]
    陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10.

    CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10.
    [11]
    范军,王西安,韩松. 油气层渗流与井筒多相流动的耦合及应用[J]. 重庆大学学报(自然科学版),2000,23(增刊1):154–157.

    FAN Jun, WANG Xi’an, HAN Song. Researches on the coupling of formation percolation and wellbore multiphase flow and its application[J]. Journal of Chongqing University(Natural Science Edition), 2000, 23(supplement 1): 154–157.
    [12]
    李相方,庄湘琦,隋秀香,等. 气侵期间环空气液两相流动研究[J]. 工程热物理学报,2004,25(1):73–76.

    LI Xiangfang, ZHUANG Xiangqi, SUI Xiuxiang, et al. Study on two-phase gas-liquid flow during gas kick[J]. Journal of Engineering Thermophysics, 2004, 25(1): 73–76.
    [13]
    孙宝江,王志远,公培斌,等. 深水井控的七组分多相流动模型[J]. 石油学报,2011,32(6):1042–1049.

    SUN Baojiang, WANG Zhiyuan, GONG Peibin, et al. Application of a seven-component multiphase flow model to deepwater well control[J]. Acta Petrolei Sinica, 2011, 32(6): 1042–1049.
    [14]
    王志远,孙宝江,高永海,等. 水合物藏钻探中的环空多相流溢流特性研究[J]. 应用基础与工程科学学报,2010,18(1):129–140.

    WANG Zhiyuan, SUN Baojiang, GAO Yonghai, et al. Study on annular multiphase flow characteristic of gas kick during hydrate reservoir drilling[J]. Journal of Basic Science and Engineering, 2010, 18(1): 129–140.
    [15]
    SANTOS O L A. Mathematical model of a gas kick when drilling in deep waters, A[D]. Golden: Colorado School of Mines, 1982.
    [16]
    NICKENS H V. A dynamic computer model of a kicking well[J]. SPE Drilling Engineering, 1987, 2(2): 159–173. doi: 10.2118/14183-PA
    [17]
    NUNES J O L, BANNWART A C, RIBEIRO P R. Mathematical modeling of gas kicks in deep water scenario[R]. SPE 77253, 2002.
    [18]
    杨传书. 数字孪生技术在钻井领域的应用探索[J]. 石油钻探技术,2022,50(3):10–16.

    YANG Chuanshu. Exploration for the application of digital twin technology in drilling engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10–16.
    [19]
    耿黎东. 钻完井大数据特点与应用方案研究[J]. 石油钻采工艺,2022,44(1):89–96.

    GENG Lidong. Study on characteristics and application scheme of big data in drilling and completion[J]. Oil Drilling & Production Technology, 2022, 44(1): 89–96.
    [20]
    李中. 中国海油油气井工程数字化和智能化新进展与展望[J]. 石油钻探技术,2022,50(2):1–8.

    LI Zhong. Progress and prospects of digitization and intelligentization of CNOOC’s oil and gas well engineering[J]. Petroleum Drilling Techniques, 2022, 50(2): 1–8.
    [21]
    李根生,宋先知,祝兆鹏,等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35–47.

    LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 35–47.
    [22]
    崔奕,汪海阁,丁燕,等. 碳中和愿景下油气钻井的数字化、智能化转型之路[J]. 石油钻采工艺,2022,44(6):769–776.

    CUI Yi, WANG Haige, DING Yan, et al. Routes of digital and intelligent transformation for petroleum drilling with a vision of carbon neutrality[J]. Oil Drilling & Production Technology, 2022, 44(6): 769–776.
    [23]
    李金蔓,周守为,孙金声,等. 数字技术赋能海上油田开发–渤海智能油田建设探索[J]. 石油钻采工艺,2022,44(3):376–382.

    LI Jinman, ZHOU Shouwei, SUN Jinsheng, et al. Digital technology energizes offshore oilfield development: An attempt to build the Bohai smart oilfield[J]. Oil Drilling & Production Technology, 2022, 44(3): 376–382.
    [24]
    FRANÇA F, LAHEY R T Jr. The use of drift-flux techniques for the analysis of horizontal two-phase flows[J]. International Journal of Multiphase Flow, 1992, 18(6): 787–801. doi: 10.1016/0301-9322(92)90059-P
    [25]
    DUMITRESCU D T. Strömung an einer Luftblase im senkrechten Rohr[J]. Journal of Applied Mathematics and Mechanics, 1943, 23(3): 139–149.
    [26]
    GOKCAL B, AL-SARKHI A S, SARICA C, et al. Prediction of slug frequency for high viscosity oils in horizontal pipes[R]. SPE 124057, 2009.
    [27]
    ZHANG Zhi, SUN Baojiang, WANG Zhiyuan, et al. Intelligent well killing control method driven by coupling multiphase flow simulation and real-time data[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110337. doi: 10.1016/j.petrol.2022.110337
    [28]
    娄文强,王志远,李鹏飞,等. 适用于全流型域全倾角范围的井筒漂移流关系[J]. 石油勘探与开发,2022,49(3):605–615. doi: 10.1016/S1876-3804(22)60050-8

    LOU Wenqiang, WANG Zhiyuan, LI Pengfei, et al. Wellbore drift flow relation suitable for full flow pattern domain and full dip range[J]. Petroleum Exploration and Development, 2022, 49(3): 605–615. doi: 10.1016/S1876-3804(22)60050-8
    [29]
    ZHANG Li, WANG Ning. A modified DNA genetic algorithm for parameter estimation of the 2-Chlorophenol oxidation in supercritical water[J]. Applied Mathematical Modelling, 2013, 37(3): 1137–1146. doi: 10.1016/j.apm.2012.03.046
    [30]
    ZHANG Zhi, SUN Baojiang, WANG Zhiyuan, et al. Early monitoring method of downhole accident driven by physics based model and data driven methods coupling[J]. Geoenergy Science and Engineering, 2023, 221: 111296. doi: 10.1016/j.petrol.2022.111296
  • Related Articles

    [1]ZHANG Jian, XIAO Yuhan, ZHOU Zhongyi, YANG Junlong. Downhole WOB Prediction Method Based on CNN-Bi-LSTM Network Optimized by TDCSO[J]. Petroleum Drilling Techniques, 2024, 52(5): 82-90. DOI: 10.11911/syztjs.2024098
    [2]CHEN Lian, SONG Zhaohui, WANG Xindong, ZHANG Wutao, XIE Zhengsen, SU Zihua. Optimization Methodology for Tooth Deflection Angles of Single-Cone Bit with Wedge-Shaped Teeth[J]. Petroleum Drilling Techniques, 2023, 51(1): 57-61. DOI: 10.11911/syztjs.2022026
    [3]WANG Peng, TIAN Yi, FENG Ding, TU Yiliu. Optimization Design Method for Casing String Combination Based on Heuristic Algorithm[J]. Petroleum Drilling Techniques, 2020, 48(2): 42-48. DOI: 10.11911/syztjs.2020011
    [4]SUN Ting, ZHAO Ying, YANG Jin, YIN Qishuai, WANG Wenxing, CHEN Yuan. Real-Time Intelligent Identification Method under Drilling Conditions Based on Support Vector Machine[J]. Petroleum Drilling Techniques, 2019, 47(5): 28-33. DOI: 10.11911/syztjs.2019033
    [5]GAO Deli, HUANG Wenjun, LI Xin. Research on Extension Limits and Engineering Design Methods for Extended Reach Drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 1-8. DOI: 10.11911/syztjs.2019069
    [6]ZHAO Chuanwei, LI Yun, LI Guofeng, DONG Enbo, SUN Haoyu. Design Optimization of Full Bore Stimulation Sleeves with Ball Drop Counting using the Taguchi Method[J]. Petroleum Drilling Techniques, 2017, 45(1): 97-103. DOI: 10.11911/syztjs.201701017
    [7]Ma Hai, Xiao Hongbing, Yang Jinzhou, Li Yonghua. A Real-Time LWD Data Processing Method Based on Akima Interpolation[J]. Petroleum Drilling Techniques, 2015, 43(3): 82-86. DOI: 10.11911/syztjs.201503016
    [8]Ye Zhi, Fan Honghai, Ji Rongyi, Li Chaowei, Cai Jun. Investigation and Application of Pore Pressure Monitoring Method Based on LWD Data[J]. Petroleum Drilling Techniques, 2014, 42(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2014.02.009
    [9]Jiang Tingxue, Bian Xiaobing, Yuan Kai, Zhou Linbo. A New Method in Staged Fracturing Design Optimization for Shale Gas Horizontal Wells[J]. Petroleum Drilling Techniques, 2014, 42(2): 1-6. DOI: 10.3969/j.issn.1001-0890.2014.02.001
    [10]Cui Meng, Li Jiajun, Ji Guodong, Chen Yongheng. Optimize Method of Drilling Parameter of Compound Drilling Based on Mechanical Specific Energy Theory[J]. Petroleum Drilling Techniques, 2014, 42(1): 66-70. DOI: 10.3969/j.issn.1001-0890.2014.01.013
  • Cited by

    Periodical cited type(11)

    1. 潘永强,何海蛟,张坤,朱秀玉,闫晶,王洪月. 超短半径水平井双保型醇基钻井液技术. 石油石化节能与计量. 2024(11): 1-6 .
    2. 陈楠,薛宪波,关皓纶,王琦,贾安学. 渤海油田超短半径多分支井钻完井技术应用分析. 山东石油化工学院学报. 2023(03): 75-79 .
    3. 薛世华,罗敏,王晶,林志强. 铰接式柔性钻杆的参数化设计. 机床与液压. 2022(01): 102-106 .
    4. 李涛,徐卫强,苏强,曾知昊,杨兆亮. 四川盆地高温高压含硫气井五级分支井钻完井技术. 石油钻采工艺. 2022(03): 269-275 .
    5. 崔树建. 超短半径水平井技术研究与应用. 西部探矿工程. 2022(10): 123-124+129 .
    6. 高定祥,任向海,康红兵,黎伟,刘忠杰. 基于Wellplan的XJ850修井机侧钻能力分析. 设备管理与维修. 2022(23): 8-10 .
    7. 王晶,罗敏,李巧珍,徐亭亭. 超短半径水平井导向筛管结构优化设计. 机床与液压. 2020(11): 62-65+75 .
    8. 王超逸. 大庆油田超短半径侧钻水平井技术研究及应用. 采油工程. 2020(02): 22-25+76 .
    9. 王超逸. 大庆油田超短半径侧钻水平井技术应用分析. 化学工程与装备. 2020(10): 67-69 .
    10. 王晶,罗敏,林志强,徐亭亭. 基于响应面法的导向筛管结构尺寸优化. 化工机械. 2020(05): 652-656 .
    11. 徐亭亭,罗敏,王晶,张佳贺,董小娜. 柔性钻杆优化设计及承载能力研究. 化工机械. 2018(06): 768-772 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (112) PDF downloads (71) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return