Citation: | DING Shidong, ZHAO Xiangyang. New Progress and Development Suggestions for Drilling and Completion Technologies in Sinopec Key Exploration Areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11-20. DOI: 10.11911/syztjs.2020069 |
In recent years, Sinopec has progressed through a series of technical improvements by means of technical research and field practices around key exploration areas, such as the Shunbei, Sichuan-Chongqing, and Ordos areas, etc. It has preliminarily formed key technologies for drilling and completion of ultra-deep wells of 8,000–9,000 m in Shunbei, key technologies for drilling and completion of shale gas wells in Sichuan and Chongqing, key technologies for marine carbonate rocks drilling in Sichuan, and key technologies for low cost drilling and completion of tight gas wells in Ordos Basin, North China. These endeavors support Sinopec’s exploration and development breakthroughs in ultra-deep oil and gas, marine carbonate oil and gas, and unconventional oil and gas resources. As exploration and development continues in increasingly deeper operations, a series of new technical problems and challenges in the key exploration areas emerges. They include the long drilling cycle, the low ROP, frequent downhole failures, and a suboptimal fracturing effect. Therefore, it is necessary to adhere to the required orientation, promote the application of mature technologies, strengthen the key technology research and vigorously implement the “quality, speed, efficiency and production improvement-focused” innovation and efficiency project, so as to provide technical supports for efficient exploration and benefit development in Sinopec key exploration areas.
[1] |
戴金星,秦胜飞,胡国艺,等. 新中国天然气勘探开发70年来的重大进展[J]. 石油勘探与开发, 2019, 46(6): 1037–1046.
DAI Jinxing, QIN Shengfei, HU Guoyi, et al. Major progress in the natural gas exploration and development in the past seven decades in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1037–1046.
|
[2] |
马永生,蔡勋育,赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考:以中国石化油气勘探为例[J]. 石油钻探技术, 2016, 44(2): 1–9.
MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration anddevelopment: case study on oil and gas exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.
|
[3] |
邹才能,郭建林,贾爱林,等. 中国大气田科学开发的内涵[J]. 天然气工业, 2020, 40(3): 1–12. doi: 10.3787/j.issn.1000-0976.2020.03.001
ZOU Caineng, GUO Jianlin, JIA Ailin, et al. Connotation of scientific development for giant gas fields in China[J]. Natural GasIndustry, 2020, 40(3): 1–12. doi: 10.3787/j.issn.1000-0976.2020.03.001
|
[4] |
伍贤柱,万夫磊,陈作,等. 四川盆地深层碳酸盐岩钻完井技术实践与展望[J]. 天然气工业, 2020, 40(2): 97–105. doi: 10.3787/j.issn.1000-0976.2020.02.011
WU Xianzhu, WAN Fulei, CHEN Zuo, et al. Drilling and completion technologies for deep carbonate rocks in the Sichuan Basin: practices and prospects[J]. Natural Gas Industry, 2020, 40(2): 97–105. doi: 10.3787/j.issn.1000-0976.2020.02.011
|
[5] |
曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术[J]. 石油钻探技术, 2019, 47(3): 25–33. doi: 10.11911/syztjs.2019062
ZENG Yijin. Key technologies for safe and efficient drilling of marine carbonate ultra-deep oil and gas wells[J]. Petroleum Drilling Techniques, 2019, 47(3): 25–33. doi: 10.11911/syztjs.2019062
|
[6] |
汪海阁,葛云华,石林. 深井超深井钻完井技术现状、挑战和“十三五”发展方向[J]. 天然气工业, 2017, 37(4): 1–8. doi: 10.3787/j.issn.1000-0976.2017.04.001
WANG Haige, GE Yunhua, SHI Lin. Technologies in deep and ultra-deep well drilling: present status, challenges and future trend in the 13th Five-Year Plan period (2016-2020)[J]. Natural Gas Industry, 2017, 37(4): 1–8. doi: 10.3787/j.issn.1000-0976.2017.04.001
|
[7] |
张锦宏. 中国石化石油工程技术现状及发展建议[J]. 石油钻探技术, 2019, 47(3): 9–17. doi: 10.11911/syztjs.2019061
ZHANG Jinhong. Current status and outlook for the development of Sinopec’s petroleum engineering technologies[J]. Petroleum DrillingTechniques, 2019, 47(3): 9–17. doi: 10.11911/syztjs.2019061
|
[8] |
马开华,谷磊,叶海超. 深层油气勘探开发需求与尾管悬挂器技术进步[J]. 石油钻探技术, 2019, 47(3): 34–40. doi: 10.11911/syztjs.2019055
MA Kaihua, GU Lei, YE Haichao. The demands on deep oil/gasexploration & development and the technical advancement of liner hangers[J]. Petroleum Drilling Techniques, 2019, 47(3): 34–40. doi: 10.11911/syztjs.2019055
|
[9] |
丁士东,陶谦,马兰荣. 中国石化固井技术进展及发展方向[J]. 石油钻探技术, 2019, 47(3): 41–49. doi: 10.11911/syztjs.2019073
DING Shidong, TAO Qian, MA Lanrong. Progress, outlook, and the development directions at Sinopec in cementing technology progress[J]. Petroleum Drilling Techniques, 2019, 47(3): 41–49. doi: 10.11911/syztjs.2019073
|
[10] |
路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–9.
LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. PetroleumDrilling Techniques, 2018, 46(1): 1–9.
|
[11] |
王中华. 国内钻井液技术进展评述[J]. 石油钻探技术, 2019, 47(3): 95–102. doi: 10.11911/syztjs.2019054
WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95–102. doi: 10.11911/syztjs.2019054
|
[12] |
赵志国,白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 8–13.
ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.
|
[13] |
赵锐,赵腾,李慧莉,等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5): 8–13. doi: 10.3969/j.issn.1006-6535.2019.05.002
ZHAO Rui, ZHAO Teng, LI Huili, et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei Hydrocarbon Field of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 8–13. doi: 10.3969/j.issn.1006-6535.2019.05.002
|
[14] |
柴龙,林永学,金军斌,等. 塔河油田外围高温高压井气滞塞防气窜技术[J]. 石油钻探技术, 2018, 46(5): 40–45.
CHAI Long, LIN Yongxue, JING Junbin, e al. Anti-gas channeling technology with gas-block plug for high temperature and high pressure wells in the periphery of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5): 40–45.
|
[15] |
林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术, 2019, 47(3): 113–120. doi: 10.11911/syztjs.2019068
LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120. doi: 10.11911/syztjs.2019068
|
[16] |
邹书强,张红卫,伊尔齐木,等. 顺北一区超深井窄间隙小尾管固井技术研究[J]. 石油钻探技术, 2019, 47(6): 60–66. doi: 10.11911/syztjs.2019114
ZOU Shuqiang, ZHANG Hongwei, Eerqm, et al. Slim liner cementing technology for ultra-deep wells with a narrow annulus in No.1 District of Shunbei Block[J]. Petroleum Drilling Techniques, 2019, 47(6): 60–66. doi: 10.11911/syztjs.2019114
|
[17] |
蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058
JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058
|
[18] |
刘伟,何龙,胡大梁,等. 川南海相深层页岩气钻井关键技术[J]. 石油钻探技术, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118
LIU Wei, HE Long, HU Daliang, et al. Key technologies for deep marine shale gas drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118
|
[19] |
林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术, 2019, 47(2): 21–27. doi: 10.11911/syztjs.2019022
LIN Yongxue, ZHEN Jianwu. Water based drilling fluid technology for deep shale gas horizontal wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21–27. doi: 10.11911/syztjs.2019022
|
[20] |
路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
|
[21] |
胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017, 22(1): 1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001
HU Wenrui. Geology-engineering integration: a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1): 1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001
|
[22] |
LYU Zehao, SONG Xianzhi, GENG Lidong, et al. Optimization of multilateral well configuration in fractured reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 172: 1153–1164. doi: 10.1016/j.petrol.2018.09.024
|
[23] |
郭建春,苟波,秦楠,等. 深层碳酸盐岩储层改造理念的革新:立体酸压技术[J]. 天然气工业, 2020, 40(2): 61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007
GUO Jianchun, GOU Bo, QIN Nan, et al. An innovative concept on deep carbonate reservoir stimulation: three-dimensional acid fracturing technology[J]. Natural Gas Industry, 2020, 40(2): 61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007
|
[24] |
ALJAWAD M S. Identifying formation mineralogy composition in acid fracturing from distributed temperature measurements[R]. SPE 195537, 2020.
|
[25] |
李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
|
[26] |
刘清友,董润,耿凯,等. 井下机器人研究进展与应用展望[J]. 石油钻探技术, 2019, 47(3): 50–55. doi: 10.11911/syztjs.2019067
LIU Qingyou, DONG Run, GENG Kai, et al. The status of current research on downhole robots and their multiple applications[J]. Petroleum Drilling Techniques, 2019, 47(3): 50–55. doi: 10.11911/syztjs.2019067
|
[27] |
HEGDE C, GRAY K. Evaluation of coupled machine learning models for drilling optimization[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 397–407. doi: 10.1016/j.jngse.2018.06.006
|
[28] |
邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1–12. doi: 10.7623/syxb202001001
ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1–12. doi: 10.7623/syxb202001001
|
[29] |
韩烈祥. 川渝地区超深井钻完井技术新进展[J]. 石油钻采工艺, 2019, 41(5): 555–561.
HAN Liexiang. New progress of drilling and completion technologies for ultra-deep wells in the Sichuan-Chongqing Area[J]. Oil Drilling & Production Technology, 2019, 41(5): 555–561.
|
1. |
杨旸,单新煜,韩文杰,蔺晓婉,王岩峰. 掺氢对现役天然气管道输送的影响. 当代化工. 2025(01): 197-201 .
![]() | |
2. |
魏舒,张吉磊,吕征,敖璐,胡俊瑜. 海上新油田投产初期天然气产量与设计差异因素分析. 中国石油和化工标准与质量. 2025(04): 129-131 .
![]() | |
3. |
姜岩,胡绍彬,李存姣,程昱,王渊. 注CO_2对地层油高压物性影响规律实验研究. 石油化工应用. 2024(05): 33-37 .
![]() | |
4. |
纪文栋,万继方,贺育贤,李景翠,刘伟,孙鹏. 中国盐穴储氢关键技术现状及展望. 石油钻探技术. 2024(04): 158-166 .
![]() | |
5. |
赵清民. “双碳”目标下我国油气田绿色低碳发展路径研究. 中外能源. 2024(10): 1-5 .
![]() | |
6. |
廖璐璐,李根生,宋先知,冯连勇,高启超,程世忠. 我国脱碳路径与油公司能源转型策略研究. 石油钻探技术. 2023(01): 115-122 .
![]() | |
7. |
鞠斌山,杨怡,杨勇,吕广忠,张传宝,曹伟东. 高含水油藏CO_2驱油与地质封存机理研究现状及待解决的关键问题. 油气地质与采收率. 2023(02): 53-67 .
![]() | |
8. |
霍宏博,刘东东,陶林,王德英,宋闯,何世明. 基于CO_2提高采收率的海上CCUS完整性挑战与对策. 石油钻探技术. 2023(02): 74-80 .
![]() | |
9. |
张烘玮,赵杰,李敬法,宇波,王嘉龙,吕冉,奚茜. 天然气掺氢输送环境下的腐蚀与氢脆研究进展. 天然气工业. 2023(06): 126-138 .
![]() | |
10. |
诸林,王东军,陈泳村. 一种吸收塔与脱甲烷塔相结合的乙烷回收改进新流程. 天然气工业. 2023(07): 101-107 .
![]() | |
11. |
汤勇,刘梦云,秦佳正,汪勇,袁权,李相宏,何佑伟. 基于物质的量平衡的气藏CO_2埋存潜力评估方法. 石油钻采工艺. 2023(02): 197-202 .
![]() | |
12. |
李阳,王敏生,薛兆杰,光新军. 绿色低碳油气开发工程技术的发展思考. 石油钻探技术. 2023(04): 11-19 .
![]() | |
13. |
陈晓平,翁中原,张建斌,李跃飞. 油气田企业布局风力发电业务经济性分析. 工程造价管理. 2023(04): 29-36 .
![]() | |
14. |
张镨,周理,张佩颖,罗勤,蒲长胜. 天然气管道掺氢对天然气分析计量的影响. 天然气工业. 2023(08): 135-145 .
![]() | |
15. |
李阳,赵清民,薛兆杰. 新一代油气开发技术体系构建与创新实践. 中国石油大学学报(自然科学版). 2023(05): 45-54 .
![]() | |
16. |
李亚伟,董怀荣. 油气钻井行业绿色低碳发展路径探析. 中外能源. 2023(S1): 1-4 .
![]() | |
17. |
Qi Zhang,Jiang-Feng Liu,Zhi-Hui Gao,Si-Yuan Chen,Bo-Yu Liu. Review on the challenges and strategies in oil and gas industry's transition towards carbon neutrality in China. Petroleum Science. 2023(06): 3931-3944 .
![]() |
|
18. |
韦小玉,杨力. 碳中和领域中英文研究对比分析——基于VOSviewer和CiteSpace的图谱呈现. 淮南师范学院学报. 2022(02): 84-89 .
![]() | |
19. |
朱清,牛茂林,邹谢华. 基于行业差异的矿业企业减碳策略研究. 中国国土资源经济. 2022(04): 31-37 .
![]() | |
20. |
李玉,陈晨,包文礼,赵德根,范瑜刚. 基于“碳达峰”背景下天然气发展形势研究——以安徽省为例. 节能. 2022(06): 85-89 .
![]() | |
21. |
曹力元. 苏北油田CO_2驱油同心双管分层注气技术. 石油钻探技术. 2022(04): 109-113 .
![]() | |
22. |
蒋海军,耿黎东,王晓慧,光新军. 国外石油工程碳减排技术与作业管理发展现状及启示. 石油钻探技术. 2022(05): 125-134 .
![]() | |
23. |
王敏生. 油气井钻完井作业碳减排发展方向与建议. 石油钻探技术. 2022(06): 1-6 .
![]() |