FENG Jin, CHI Shaolin, ZHANG Manlai, CHEN Wei, HUANG Xinyu. Optimal Design of a Downhole Seismic Generator[J]. Petroleum Drilling Techniques, 2020, 48(5): 120-126. DOI: 10.11911/syztjs.2020117
Citation: FENG Jin, CHI Shaolin, ZHANG Manlai, CHEN Wei, HUANG Xinyu. Optimal Design of a Downhole Seismic Generator[J]. Petroleum Drilling Techniques, 2020, 48(5): 120-126. DOI: 10.11911/syztjs.2020117

Optimal Design of a Downhole Seismic Generator

More Information
  • Received Date: February 18, 2020
  • Revised Date: August 15, 2020
  • Available Online: August 26, 2020
  • Aiming at the problem of low seismic intensity while drilling, which is detrimental to the anti-collision monitoring between boreholes, an energy storage downhole seismic generator was designed.This generator is composed primarily of a piston, spring, impact hammer, anvil and a delay device. It was able to achieve high efficiency impact by means of the energy storage of drilling fluid. In order to achieve the optimal performance, taking the impact hammer as research object, the impact hammer flow passage model of downhole seismic generator was established. With the CFD software, the influence law on the output performance parameters of downhole seismic generator brought by the spring stiffness, impact hammer mass, throttling area, the outlet diameter, quantity and drilling fluid density were analyzed based on the CFD dynamic grid technology. The results showed that the throttling area, number of outlets, outlet diameter and drilling fluid density were positively correlated with the output performance parameters of downhole seismic generator. The greater the spring stiffness, the smaller the displacement corresponding to the maximum impact energy of the impact hammer. Correspondingly, the greater the mass of the impact hammer, the lower the velocity. Based on the results of single factor analysis, and by taking the impact energy of impact hammer as the optimization target, the optimal combination of design parameters was obtained by the orthogonal test. The results indicated that each design parameter had its unique effect on the output performance of downhole seismic generator. While the outlet diameter and spring stiffness play a prominent role on the output performance of the generator, the throttling area, hammer mass and number of outlets have a significant role on it, and the influence of drilling fluid density is not significant.Thus, the optimal combination of design parameters was selected based on the research results, which can provide a basis for the design of downhole seismic generator.
  • [1]
    侯文杰.丛式井防碰设计与施工方法研究[D].大庆: 东北石油大学, 2017.

    HOU Wenjie. Research on the cluster well crash-proof design and construction method[D]. Daqing: Northeast Petroleum University, 2017.
    [2]
    乔宏实,娄小娟. 丛式井直井段防碰分析与预防[J]. 石化技术, 2016, 23(2): 204. doi: 10.3969/j.issn.1006-0235.2016.02.156

    QIAO Hongshi, LOU Xiaojuan. Analysis and prevention of anti-collision to vertical section of cluttering well[J]. Petrochemical Industry Technology, 2016, 23(2): 204. doi: 10.3969/j.issn.1006-0235.2016.02.156
    [3]
    DIAO Binbin, GAO Deli, LI Genkui. Development of static magnetic detection anti-collision system while drilling: proceedings of the 2016 International Conference on Artificial Intelligence and Engineering Applications[C]. Hongkong, November 12-13, 2016.
    [4]
    AKLESTAD D L, WANG Chun, JIANG Lu, et al. Well trajectory planning using bounding box scan for ant-collision analysis: US20160102544[P]. 2014-06-12.
    [5]
    王新刚. 大位移水平井井眼轨道设计与应用[J]. 现代制造技术与装备, 2018(12): 20–22, 24. doi: 10.3969/j.issn.1673-5587.2018.12.011

    WANG Xingang. Trajectory design of ERD-wells and its application[J]. Modern Manufacturing Technology and Equipment, 2018(12): 20–22, 24. doi: 10.3969/j.issn.1673-5587.2018.12.011
    [6]
    BAILEY J R. Continuous bit positioning system: US4003017[P]. 1974-06-03.
    [7]
    RECTOR J W, MARION B P. The use of drill‐bit energy as a downhole seismic source[J]. Geophysics, 1991, 56(5): 628–634. doi: 10.1190/1.1443079
    [8]
    刘刚,于长广,何保生,等. 机械式井下震源设计及试验研究[J]. 石油机械, 2013, 41(11): 17–20. doi: 10.3969/j.issn.1001-4578.2013.11.005

    LIU Gang, YU Changguang, HE Baosheng, et al. Design and experimental study of mechanical downhole seismic source[J]. China Petroleum Machinery, 2013, 41(11): 17–20. doi: 10.3969/j.issn.1001-4578.2013.11.005
    [9]
    董照显.用于丛式井防碰监测的井下震源设计[D].青岛: 中国石油大学(华东), 2013.

    DONG Zhaoxian. The downhole seismic source design for anti-collision monitoring in cluster wells[D]. Qingdao: China University of Petroleum (East China), 2013.
    [10]
    邵冬冬,刘亚,吴波,等. 井底脉冲式不对称流场钻井工具的研制及应用[J]. 石油机械, 2016, 44(10): 30–32, 46.

    SHAO Dongdong, LIU Ya, WU Bo, et al. Development and application of downhole drilling tool with pulsed asymmetrical flow field[J]. China Petroleum Machinery, 2016, 44(10): 30–32, 46.
    [11]
    李博.阀式双作用液动冲击器的仿真[D].北京: 中国地质大学(北京), 2013.

    LI Bo. Simulation of valve-type double-acting hydraulic impactor[D].Beijing: China University of Geosciences(Beijing), 2013.
    [12]
    叶晓平,李博,刘晓阳,等. 差动式双作用液动冲击器冲锤动力学方程的研究和应用[J]. 地质与勘探, 2018, 54(4): 801–809.

    YE Xiaoping, LI Bo, LIU Xiaoyang, et al. Research and application of differential double-acting hydraulic hammer dynamics equations[J]. Geology and Exploration, 2018, 54(4): 801–809.
    [13]
    WU Tao, WANG Wei, YAO Aiguo, et al. Research on impact stress and fatigue simulation of a new down-to-the-hole impactor based on ANSYS[J]. Journal of the Institution of Engineers (India): Series C, 2018, 99(3): 355–362. doi: 10.1007/s40032-016-0259-4
    [14]
    丁雯,彭振华,张园,等. 基于损伤力学的HL级抽油杆疲劳分析研究[J]. 石油钻探技术, 2019, 47(4): 47–53.

    DING Wen, PENG Zhenhua, ZHANG Yuan, et al. Fatigue analysis of HL rod Based on damage mechanics[J]. Petroleum Drilling Techniques, 2019, 47(4): 47–53.
    [15]
    MAO Yanqin, PU Wenhao, ZHANG Hao, et al. Orthogonal experimental design of an axial flow cyclone separator[J]. Chemical Engineering and Processing: Process Intensification, 2019, 144: 107645. doi: 10.1016/j.cep.2019.107645
    [16]
    HU Chaobin, ZHANG Xiaobing. Influence of multiple structural parameters on interior ballistics based on orthogonal test methods[J]. Defence Technology, 2019, 15(5): 690–697. doi: 10.1016/j.dt.2019.06.014
    [17]
    陈瑞,倪晋平. 基于正交试验的光电立靶光幕阵列结构参数优化方法[J]. 兵工学报, 2017, 38(11): 2234–2239. doi: 10.3969/j.issn.1000-1093.2017.11.021

    CHEN Rui, NI Jinping. Optimization method of light-screen-array structure parameters of photoelectric target based on orthogonal test[J]. Acta Armamentarii, 2017, 38(11): 2234–2239. doi: 10.3969/j.issn.1000-1093.2017.11.021
    [18]
    陈德春,付刚,韩昊,等. 气井携液用涡流工具结构参数优化[J]. 石油钻采工艺, 2016, 38(3): 400–404.

    CHEN Dechun, FU Gang, HAN Hao, et al. Optimization of structural parameters for fluid-carrying swirl tool in gas wells[J]. Oil Drilling & Production Technology, 2016, 38(3): 400–404.
  • Related Articles

    [1]CUI Zhuang, HOU Bing. A Numerical Simulation for Damage Mechanical Behavior of Brazilian Splitting Test of Deep Shales[J]. Petroleum Drilling Techniques, 2024, 52(2): 218-228. DOI: 10.11911/syztjs.2024032
    [2]ZHU Zuyang. Numerical Simulation and Test of Velocity Imaging for Remote Detection Acoustic Logging While Drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35-40. DOI: 10.11911/syztjs.2022113
    [3]ZHANG Yiqun, HU Xiao, WU Xiaoya, LI Gensheng, TIAN Shouceng, ZHAO Shuai. Experimental and Numerical Simulation Study of Natural Gas Hydrate Erosion by Swirling Jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24-33. DOI: 10.11911/syztjs.2022046
    [4]ZHU Weibing, ZHANG Chaojie, PANG Qingsong. Design and Optimization of the Crawling Mechanism of Rotary Sidewall Coring Device in Shale Gas Wells[J]. Petroleum Drilling Techniques, 2021, 49(3): 100-104. DOI: 10.11911/syztjs.2021043
    [5]ZHANG Yifei, WEI Yong, YU Houquan, CHEN Qiang, LIU Guoquan, ZHANG Xue. Simulation and Experimental Studies on the Influencing Factors of a Thermal Flowmeter with Constant Temperature Difference[J]. Petroleum Drilling Techniques, 2021, 49(2): 121-126. DOI: 10.11911/syztjs.2021023
    [6]ZHANG Yiqun, YU Chao, CHENG Guangming, SONG Xianzhi, ZHAO Kexian. Experimental and Numerical Study of the Explosive Forming of Slotted Metal Pipes for Energy-Gathered Nesting Plugging[J]. Petroleum Drilling Techniques, 2020, 48(6): 54-60. DOI: 10.11911/syztjs.2020107
    [7]CHEN Zuo, LI Shuangming, CHEN Zan, WANG Haitao. Hydraulic Fracture Initiation and Extending Tests in Deep Shale Gas Formations and Fracturing Design Optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70-76. DOI: 10.11911/syztjs.2020060
    [8]DING Wen, PENG Zhenhua, ZHANG Yuan, REN Xianghai, ZHANG Xin, WU Chao. Fatigue Analysis of HL Rod Based on Damage Mechanics[J]. Petroleum Drilling Techniques, 2019, 47(4): 47-53. DOI: 10.11911/syztjs.2019041
    [9]FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017
    [10]Ke Ke, Zhang Hui, Zhou Yuyang, Wang Lei, Feng Shilun. The Development of Testing Simulators for Conductor Jets Running in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 33-37. DOI: 10.11911/syztjs.201502006
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (580) PDF downloads (52) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return