Citation: | WANG Man, YUAN Miao, MIN Rui, et al. Numerical study on the dynamic characteristics and ultrasonic enhancement of cavitation bubbles under self-excited oscillating jet [J]. Petroleum Drilling Techniques,2023, 51(6):43-49. DOI: 10.11911/syztjs.2023058 |
In order to understand the dynamic characteristics of cavitation bubbles in a Helmholtz nozzle cavity and the evolution of cavitation bubble responses under the influence of ultrasonic waves, a mathematical model describing the dynamic variation of cavitation bubbles in a self-excited oscillating nozzle cavity was developed based on cavitation dynamics. In addition, the effects of Helmholtz nozzle cavity length and diameter on cavitation intensity and the dynamic behavior of cavitation bubbles when subjected to an additional acoustic field were studied. The results showed that both the cavity length and cavity diameter of the self-oscillating jet nozzle affected the cavitation intensity in the cavity. The increase in the cavity length and cavity diameter contributed to improving cavitation intensity. The expansion and contraction of cavitation bubbles in the acoustic–fluid coupling field were more severe than those in a single flow field. The frequency and amplitude of ultrasonic waves also had a great influence on cavitation intensity, with an optimal ultrasonic wave frequency identified for maximizing cavitation intensity in the cavity. In addition, excessively high ultrasound frequencies resulted in shorter acoustic wave expansion time and a shorter growth time of the cavitation nucleus. There was a positive association between cavitation intensity and acoustic field amplitude. These research findings are valuable for enhancing the practical application of self-excited oscillating cavitation jet technology and ultrasonic-enhanced pulse jet technology.
[1] |
LI Deng, KANG Yong, WANG Xiaochuan, et al. Effects of nozzle inner surface roughness on the cavitation erosion characteristics of high speed submerged jets[J]. Experimental Thermal and Fluid Science, 2016, 74: 444–452. doi: 10.1016/j.expthermflusci.2016.01.009
|
[2] |
LI Deng, KANG Yong, DING Xiaolong, et al. Experimental study on the effects of feeding pipe diameter on the cavitation erosion performance of self-resonating cavitating waterjet[J]. Experimental Thermal and Fluid Science, 2017, 82: 314–325. doi: 10.1016/j.expthermflusci.2016.11.029
|
[3] |
CAI Tengfei, LIU Boshen, MA Fei, et al. Influence of nozzle lip geometry on the Strouhal number of self-excited waterjet[J]. Experimental Thermal and Fluid Science, 2020, 112: 109978. doi: 10.1016/j.expthermflusci.2019.109978
|
[4] |
CAI Tengfei, PAN Yan, MA Fei. Effects of nozzle lip geometry on the cavitation erosion characteristics of self-excited cavitating waterjet[J]. Experimental Thermal and Fluid Science, 2020, 117: 110137. doi: 10.1016/j.expthermflusci.2020.110137
|
[5] |
LIU Wenchuan, KANG Yong, WANG Xiaochuan, et al. Integrated CFD-aided theoretical demonstration of cavitation modulation in self-sustained oscillating jets[J]. Applied Mathematical Modelling, 2020, 79: 521–543. doi: 10.1016/j.apm.2019.10.050
|
[6] |
李晓红,卢义玉,赵瑜,等. 高压脉冲水射流提高松软煤层透气性的研究[J]. 煤炭学报,2008,33(12):1386–1390.
LI Xiaohong, LU Yiyu, ZHAO Yu, et al. Study on improving the permeability of soft coal seam with high pressure pulsed water jet[J]. Journal of China Coal Society, 2008, 33(12): 1386–1390.
|
[7] |
郎宝山. 稠油水平井大直径封漏堵水管柱的研制与应用[J]. 特种油气藏,2020,27(3):157–162.
LANG Baoshan. Development and application of large-diameter sealing-plugging string in the heavy-oil horizontal well[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 157–162.
|
[8] |
冷冰. 火驱同心双管分层注气管柱研制及试验[J]. 特种油气藏,2020,27(4):149–155.
LENG Bing. Development and test of concentric dual-tube zonal gas injection string in fire-flooding[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 149–155.
|
[9] |
向美景,王晓川,李登,等. 亥姆霍兹上喷嘴出口结构对射流振荡特性的影响[J]. 振动与冲击,2020,39(7):74–80.
XIANG Meijing, WANG Xiaochuan, LI Deng, et al. Effects of Helmholtz upper nozzle outlet structure on jet oscillation characteristics[J]. Journal of Vibration and Shock, 2020, 39(7): 74–80.
|
[10] |
冯国强,隋义勇,冯国勇. 柱塞举升优化设计及敏感性分析[J]. 石油钻探技术,2007,35(5):104–107.
FENG Guoqiang, SUI Yiyong, FENG Guoyong. Optimum design and sensitivity analysis for plunger lift[J]. Petroleum Drilling Techniques, 2007, 35(5): 104–107.
|
[11] |
刘尧文,明月,张旭东,等. 涪陵页岩气井 “套中固套” 机械封隔重复压裂技术[J]. 石油钻探技术,2022,50(3):86–91.
LIU Yaowen, MING Yue, ZHANG Xudong, et al. “Casing in casing” mechanical isolation refracturing technology in Fuling shale gas wells[J]. Petroleum Drilling Techniques, 2022, 50(3): 86–91.
|
[12] |
李江云,王乐勤,徐如良,等. 低压大直径喷嘴自激脉冲射流空化模型[J]. 工程热物理学报,2005,26(3):438–440.
LI Jiangyun, WANG Leqin, XU Ruliang, et al. Cavitation model for the low-pressure large-dia self-excited pulse nozzle[J]. Journal of Engineering Thermophysics, 2005, 26(3): 438–440.
|
[13] |
PLESSETT M S, PROSPERETTI A. Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics, 1977, 9(1): 145–185. doi: 10.1146/annurev.fl.09.010177.001045
|
[14] |
KELLER J B, MIKSIS M. Bubble oscillations of large amplitude[J]. The Journal of the Acoustical Society of America, 1980, 68(2): 628–633. doi: 10.1121/1.384720
|
[15] |
DAVYDOV L, REDDY E P, FRANCE P, et al. Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders[J]. Applied Catalysis B: Environmental, 2001, 32(1/2): 95–105.
|
[16] |
吴鹏飞. 声–流耦合空化机理研究[D]. 北京: 中国科学院大学, 2018.
WU Pengfei. Mechanism and dynamics of bydrodynamic-acoustic cavitation[D]. Beijing: University of Chinese Academy of Sciences, 2018.
|
[17] |
FEHLBERG E. Classical fourth-and lower order Runge-Kutta formulas with stepsize control and their application to heat transfer problems[J]. Computing, 1970, 6(1): 61–71.
|
[18] |
罗贤能. 声空化气泡成长及破裂研究[D]. 重庆: 重庆大学, 2010.
LUO Xianneng. The development and collapse process of acoustic cavitation bubble[D]. Chongqing: Chongqing University, 2010.
|
[19] |
刘华敏,李牧,刘乔平,等. 涪陵页岩气田柱塞气举工艺研究与应用[J]. 石油钻探技术,2020,48(3):102–107.
LIU Huamin, LI Mu, LIU Qiaoping, et al. Research and application of plunger gas lift technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 102–107.
|
[20] |
汤勇,胡世莱,汪勇,等. “注入—压裂—返排”全过程的CO2相态特征:以鄂尔多斯盆地神木气田致密砂岩气藏SH52井为例[J]. 天然气工业,2019,39(9):58–64.
TANG Yong, HU Shilai, WANG Yong, et al. Phase behaviors of CO2 in the whole process of injection-fracturing-flowback: a case study of Well SH52 in a fight sandstone gas reservoir of the Shenmu Gas Field, Ordos Basin[J]. Natural Gas Industry, 2019, 39(9): 58–64.
|
[21] |
LIU Wenchuan, KANG Yong, ZHANG Mingxing, et al. Experimental and theoretical analysis on chamber pressure of a self-resonating cavitation waterjet[J]. Ocean Engineering, 2018, 151: 33–45. doi: 10.1016/j.oceaneng.2018.01.019
|
[22] |
李晓红,杨林,王建生,等. 自激振荡脉冲射流装置的固有频率特性[J]. 煤炭学报,2000,25(6):641–644.
LI Xiaohong, YANG Lin, WANG Jiansheng, et al. The natural frequency characteristic of the self-excited oscillation pulsed water jet device[J]. Journal of China Coal Society, 2000, 25(6): 641–644.
|
[23] |
唐川林,杨林,张凤华,等. 来流脉动对自激振荡脉冲射流的影响[J]. 力学与实践,2001,23(3):24–27.
TANG Chuanlin, YANG Lin, ZHANG Fenghua, et al. Effects of upstream oscillating flow on the self-excited oscillation pulsed jet[J]. Mechanics in Engineering, 2001, 23(3): 24–27.
|
[24] |
唐川林,胡东,裴江红. 自激振荡脉冲射流喷嘴频率特性实验研究[J]. 石油学报,2007,28(4):122–125. doi: 10.7623/syxb200704026
TANG Chuanlin, HU Dong, PEI Jianghong. Experimental study on the frequency characteristic of the self-excited oscillation pulsed nozzle[J]. Acta Petrolei Sinica, 2007, 28(4): 122–125. doi: 10.7623/syxb200704026
|
[25] |
赵韡,祝锡晶,侯帅豪,等. 自激振荡脉冲射流的声振特性分析[J]. 电加工与模具,2019(6):66–70. doi: 10.3969/j.issn.1009-279X.2019.06.014
ZHAO Wei, ZHU Xijing, HOU Shuaihao, et al. The acoustic signal characteristics of self-excited oscillation pulsed water jet[J]. Electromachining & Mould, 2019(6): 66–70. doi: 10.3969/j.issn.1009-279X.2019.06.014
|
[26] |
方珍龙. 亥姆赫兹式自激振荡射流空化特性研究[D]. 武汉: 武汉大学, 2016.
FANG Zhenlong. Research on cavitation characteristics of Helmholtz self-excited oscillation pulsed jet[D]. Wuhan: Wuhan University, 2016.
|
[27] |
王循明. 自激振荡脉冲射流装置性能影响因素数值分析及喷嘴结构优化设计[D]. 杭州: 浙江大学, 2005.
WANG Xunming. Influence factors simulation study of the self-excited oscillation pulsed jet device and nozzle structure optimized design[D]. Hangzhou: Zhejiang University, 2005.
|
[28] |
ŘÍHA Z, ZELEŇÁK M, KRUML T, et al. Comparison of the disintegration abilities of modulated and continuous water jets[J]. Wear, 2021, 478/479: 203891. doi: 10.1016/j.wear.2021.203891
|
[29] |
NAG A, HLOCH S, DIXIT A R, et al. Utilization of ultrasonically forced pulsating water jet decaying for bone cement removal[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(3): 829–840.
|
[1] | ZHU Lei, PAN Jinlin, CHEN Xuelian, MA Rui, TIAN Longmei, ZHOU Haodong. Influence of Casing and Cement Sheath Dimensions on Casing Waves in CBL/VDL Logging[J]. Petroleum Drilling Techniques, 2025, 53(1): 136-143. DOI: 10.11911/syztjs.2025016 |
[2] | DING Qianshen, WU Chunxin, LI Jinze, ZOU Dehao, XIA Jinna, HE Bin. Numerical Simulation and Rock Breaking Law of Reservoir Induced by Electrothermal Chemical Energy-Gathered Shock Wave[J]. Petroleum Drilling Techniques, 2025, 53(1): 67-74. DOI: 10.11911/syztjs.2024125 |
[3] | HUANG Kun, LI Xinyang, ZHU Xinlei, MENG Qingyang, ZENG Fanhui. Research on a Shock Wave Device with Pulsed Discharge for Shale Gas Stimulation[J]. Petroleum Drilling Techniques, 2022, 50(4): 97-103. DOI: 10.11911/syztjs.2022049 |
[4] | LU Zongyu, ZHENG Junsheng, JIANG Zhenxin, ZHAO Fei. An Experimental Study on Rock Breaking Efficiency with Ultrasonic High-Frequency Rotary-Percussive Drilling Technology[J]. Petroleum Drilling Techniques, 2021, 49(2): 20-25. DOI: 10.11911/syztjs.2020126 |
[5] | WANG Zhizhan, ZHU Zuyang, LI Fengbo, ZHANG Yuanchun, ZHANG Wei, DU Huanfu. Development and Testing of a Portable Acoustic Logging System on Cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141 |
[6] | HUANG Jiagen, WANG Haige, JI Guodong, ZHAO Fei, MING Ruiqing, HAO Yalong. The Rock Breaking Mechanism of Ultrasonic High Frequency Rotary-Percussive Drilling Technology[J]. Petroleum Drilling Techniques, 2018, 46(4): 23-29. DOI: 10.11911/syztjs.2018097 |
[7] | Wang Xu, Zhang Xinshu, You Yunxiang. The Study on Scale Effect of Internal Solitary Wave Loads of Cylindrical Drilling Platforms[J]. Petroleum Drilling Techniques, 2015, 43(4): 30-36. DOI: 10.11911/syztjs.201504006 |
[8] | Shi Huaizhong, Li Gensheng, Zhang Hao, Huang Zhongwei, Niu Jilei, Wang Deyu. Experimental Study on Hydraulic Pulsed and Cavitating Jet Drilling Technique in Deep Wells of Tahe Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(3): 85-88. DOI: 10.3969/j.issn.1001-0890.2013.03.016 |
1. | 冷光耀. 空气和CO_2辅助蒸汽吞吐室内实验研究. 油田化学. 2018(03): 447-450+479 . DOI:10.19346/j.cnki.1000-4092.2018.03.013 |