GUANG Xinjun, WANG Minsheng. Key Production Test Technologies for Offshore Natural Gas Hydrate[J]. Petroleum Drilling Techniques, 2016, 44(5): 45-51. DOI: 10.11911/syztjs.201605008
Citation: GUANG Xinjun, WANG Minsheng. Key Production Test Technologies for Offshore Natural Gas Hydrate[J]. Petroleum Drilling Techniques, 2016, 44(5): 45-51. DOI: 10.11911/syztjs.201605008

Key Production Test Technologies for Offshore Natural Gas Hydrate

More Information
  • Received Date: March 30, 2016
  • Revised Date: August 04, 2016
  • Taking intothe differences in development technologies for offshore natural gas hydrate (NGH) and conventional offshore oil and gas, this paper discusses the characteristics of NGH reservoirs and the challenges in NGH production tests. Key technologies for NGH production tests were presented, including managed-pressure drilling (MPD), cased drilling, inhibitive drilling fluid, drilling fluid cooling system, low-temperature and low-heat cement slurry system, completion technique, production method optimization, reservoir and environment monitoring, etc. It is proposed that research for offshore NGH production test in China should focus on physical and mechanical properties of hydrates, safe well construction, continuous production and sand control, adaptability evaluation of production method, and reservoir parameter and formation deformation monitoring during production test. Moreover, demonstrative projects should be adopted to create the offshore NGH production test technologies, so as to provide reliable support for development of offshore NGH effectively in China.
  • [1]
    滕吉文,张永谦,阮小敏.发展可再生能源和新能源与必须深层次思考的几个科学问题:非化石能源发展的必由之路[J].地球物理学进展,2010,25(4):1115-1152. TENG Jiwen,ZHANG Yongqian,RUAN Xiaomin.Some important scientific problems for development of renewable and new energy:the only way for development of non-fossil energy[J].Progress in Geophysics,2010,25(4):1115-1152.
    [2]
    MIYAZAKI K,MASUI A,SAKAMOTO Y,et al.Effect of confining pressure on triaxial compressive properties of artificial methane hydrate bearing sediments[R].OTC 20721,2010.
    [3]
    孙晓杰,程远方,李令东,等.天然气水合物岩样三轴力学试验研究[J].石油钻探技术,2012,40(4):52-57. SUN Xiaojie,CHENG Yuanfang,LI Lingdong,et al.Triaxial compression test on synthetic core sample with simulated hydrate-bearing sediments[J].Petroleum Drilling Techniques,2012,40(4):52-57.
    [4]
    李传辉,刘学伟.地球物理技术在降低水合物钻井风险中的应用[J].地球物理学进展,2014,29(1):300-305. LI Chuanhui,LIU Xuewei.The application of geophysical techniques in reducing the drilling risks induced by gas hydrates[J].Progress in Geophysics,2014,29(1):300-305.
    [5]
    沈海超,程远方,胡晓庆.天然气水合物藏降压开采近井储层稳定性数值模拟[J].石油钻探技术,2012,40(2):76-81. SHEN Haichao,CHENG Yuanfang,HU Xiaoqing.Numerical simulation of near wellbore reservoir stability during gas hydrate production by depressurization[J].Petroleum Drilling Techniques,2012,40(2):76-81.
    [6]
    田辉.水合物钻井过程中稳定性的理论研究[D].青岛:中国石油大学(华东),2007. TIAN Hui.Theoretical study on the stability of natural gas hydrate[D].Qingdao:China University of Petroleum(Huadong),2007.
    [7]
    白玉湖,李清平,周建良,等.天然气水合物对深水钻采的潜在风险及对应性措施[J].石油钻探技术,2009,37(3):17-21. BAI Yuhu,LI Qingping,ZHOU Jianliang,et al.The potential risk of gas hydrate to deepwater drilling and production and the corresponding strategy[J].Petroleum Drilling Techniques,2009,37(3):17-21.
    [8]
    宫智武,张亮,程海清,等.海底天然气水合物分解对海洋钻井安全的影响[J].石油钻探技术,2015,43(4):19-24. GONG Zhiwu,ZHANG Liang,CHENG Haiqing,et al.The influence of subsea natural gas hydrate dissociation on the safety of offshore drilling[J].Petroleum Drilling Techniques,2015,43(4):19-24.
    [9]
    HANNEGAN D,TODD R J,PRITCHARD D M,et al.MPD:uniquely applicable to methane hydrate drilling[R].SPE 91560,2004.
    [10]
    TODD R J,HANNEGAN D M,HARRALL S.New technology needs for methane hydrates production[R].OTC 18247,2006.
    [11]
    鲍洪志,赵向阳,张华卫,等.Addax OML 137区块深水控压钻井技术[J].石油钻采工艺,2013,35(4):35-39. BAO Hongzhi,ZHAO Xiangyang,ZHANG Huawei,et al.Deepwater managed pressure drilling technology in Block OML 137 of Addax[J].Oil Drilling and Production Technology,2013,35(4):35-39.
    [12]
    VRIELINK H J,BRAFORD J S,BASARAB L,et al.Successful application of casing-while-drilling technology in a Canadian arctic permafrost application[R].SPE 111806,2008.
    [13]
    ANDREY B,GURBAN V,STANISLAV K,et al.Drilling with casing system continues successful drilling of permafrost sections in Arctic circle of western Siberia(Russian Federation) [R].OTC 24617,2014.
    [14]
    徐一龙,黄凯文,梁继文,等.乐东气田表层井段的套管钻井技术[J].天然气工业,2013,33(11):74-78. XU Yilong,HUANG Kaiwen,LIANG Jiwen,et al.Casing drilling technology applied to surface interval of a well in the Ledong 22-1 Gas Field,Yinggehai Basin[J].Natural Gas Industry,2013,33(11):74-78.
    [15]
    WEBBER P,MORALES N,CONRAD P,et al.Development of a dual functional kinetic hydrate inhibitor for a novel North Sea wet gas application[R].SPE 164107,2013.
    [16]
    徐加放,邱正松,何畅.深水钻井液中水合物抑制剂的优化[J].石油学报,2011,32(1):149-152. XU Jiafang,QIU Zhengsong,HE Chang.The inhibitor optimization of gas hydrates in deepwater drilling fluids[J].Acta Petroleum Sinica,2011,32(1):149-152.
    [17]
    靳书凯,张崇,孟文波,等.陵水17-2深水气田钻完井天然气水合物生产风险及预防措施[J].中国海上油气,2015,27(4):93-101. JIN Shukai,ZHANG Chong,MENG Wenbo,et al.Gas hydrate risk and preventative measures for drilling and completion operations in LS 17-2 deep water gas field[J].China Offshore Oil and Gas,2015,27(4):93-101.
    [18]
    MAURY V,GUENOT A.Practical advantages of mud cooling systems for drilling[R].SPE 25732,1995.
    [19]
    李宽,张永勤,孙友宏,等.天然气水合物钻井泥浆冷却系统研究及优化[J].钻采工艺,2013,36(4):34-36. LI Kuan,ZHANG Yongqin,SUN Youhong,et al.Research and optimization of mud cooling system in gas hydrate drilling[J].Drilling Production Technology,2013,36(4):34-36.
    [20]
    TAOUTAOU S,ASHRAF S,TAKAHASHI U.Implementation of a fit-for-purpose cementing technology for the first gas hydrate production in Japan[R].IPTC-17997-MS,2014.
    [21]
    MATSUZAWA M,TERAO Y,HAY B,et al.A completion system application for the world’s first marine hydrate production test[R].OTC 25310,2014.
    [22]
    TERAO Y,DUNCAN M,HAY B,et al.Deepwater methane hydrate gravel packing completion results and challenges[R].OTC 25330,2014.
    [23]
    QIU Kaibin,YAMAMOTO K,BIRCHWOOD R A,et al.Well integrity evaluation for methane hydrate production in the deepwater Nankai Trough[R].IPTC 17792,2014.
    [24]
    KURIHARA M,OUCHI H,NARITA H,et al.Gas production from methane hydrate reservoirs[C]//Proceedings of the 7th International Conference on Gas Hydrate,Edingburgh,Scotland,United Kingdom,July 17-21,2011.
    [25]
    栾锡武,赵克斌,孙冬胜,等.天然气水合物的开采:以马利克钻井为例[J].地球物理学进展,2007,22(4):1295-1304. LUAN Xiwu,ZHAO Kebin,SUN Dongsheng,et al.Gas hydrates production:in case of Mallik test well[J].Progress in Geophysics,2007,22(4):1295-1304.
    [26]
    YAMAMOTO K,TERAO Y,IKAWA T,et al.Operational overview of the first offshore production test of methane hydrate in the Eastern Nankai Trough[R].OTC 25243,2014.
    [27]
    张旭辉,鲁晓兵,刘乐乐.天然气水合物开采方法研究进展[J].地球物理学进展,2014,29(2):858-869. ZHANG Xuhui,LU Xiaobing,LIU Lele.Advances in natural gas hydrate recovery methods[J].Progress in Geophysics,2014,29(2):858-869.
    [28]
    李刚,李小森,Keni ZHANG,等.水平井开采南海神狐海域天然气水合物数值模拟[J].地球物理学报,2011,54(9):2325-2337. LI Gang,LI Xiaosen,ZHANG Keni,et al.Numerical simulation of gas production from hydrate accumulations using a single horizontal well in Shenhu Area,South China Sea[J].Chinese Journal of Geophysics,2011,54(9):2325-2337
    [29]
    TERAO Y,LAY K,YAMANOTO K.Design of the surface flow test system for 1st offshore production test of methane hydrate[R].OTC 24719,2014.
    [30]
    盛堰,王兆山,冯久超,等.天然气水合物海底环境效应长期监测低功耗控制系统嵌入式设计[J].海洋技术,2013,32(2):30-34. SHENG Yan,WANG Zhaoshan,FENG Jiuchao,et al.Low-power control system embedded design for long-term seabed environmental effects monitoring system of carbon hydrate[J].Ocean Technology,2013,32(2):30-34.
  • Related Articles

    [1]ZHANG Guilin. Modification of the Relative Time Method Calculation Formula for Oil and Gas Up-Channeling Velocity[J]. Petroleum Drilling Techniques, 2024, 52(1): 32-37. DOI: 10.11911/syztjs.2023102
    [2]WANG Xu, LIU Dejun, WU Shiwei, LI Yang, ZHAI Ying. Simulation of Hydraulic Fracture Responses Based on a Magnetotelluric Monitoring Method[J]. Petroleum Drilling Techniques, 2023, 51(6): 115-119. DOI: 10.11911/syztjs.2023018
    [3]SUN Weifeng, LIU Kai, ZHANG Dezhi, LI Weihua, XU Liming, DAI Yongshou. A Kick and Lost Circulation Monitoring Method Combining Bi-GRU and Drilling Conditions[J]. Petroleum Drilling Techniques, 2023, 51(3): 37-44. DOI: 10.11911/syztjs.2023043
    [4]YANG Zhen, YU Qijiao, MA Qingming. Real Time Inversion and Field Test of LWD Azimuthal Electromagnetic Waves Based on Quasi-Newton Method[J]. Petroleum Drilling Techniques, 2020, 48(3): 120-126. DOI: 10.11911/syztjs.2020025
    [5]FENG Jin, NI Xiaowei, YANG Qing, GUAN Yao, LIU Diren. Research on Array Lateral Logging Real-Time Inversions Based on Hybrid Simulated Annealing Algorithms[J]. Petroleum Drilling Techniques, 2019, 47(5): 121-126. DOI: 10.11911/syztjs.2019107
    [6]SUN Ting, ZHAO Ying, YANG Jin, YIN Qishuai, WANG Wenxing, CHEN Yuan. Real-Time Intelligent Identification Method under Drilling Conditions Based on Support Vector Machine[J]. Petroleum Drilling Techniques, 2019, 47(5): 28-33. DOI: 10.11911/syztjs.2019033
    [7]Sui Xiuxiang, Liang Yufeng, Li Yiming, Yin Bangtang, Li Xiangfang. Early Monitoring of the Gas-Cut in Deepwater Riser Based on Doppler Measuring System[J]. Petroleum Drilling Techniques, 2014, 42(5): 90-94. DOI: 10.11911/syztjs.201405016
    [8]Ye Zhi, Fan Honghai, Ji Rongyi, Li Chaowei, Cai Jun. Investigation and Application of Pore Pressure Monitoring Method Based on LWD Data[J]. Petroleum Drilling Techniques, 2014, 42(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2014.02.009
    [9]Qu Junbo, Chen Ping, Ma Tianshou, Huang Wanzhi, Hu Ze. Design and Test of Down-Hole Micro-Flow Device for Monitoring Overflow[J]. Petroleum Drilling Techniques, 2012, 40(5): 106-110. DOI: 10.3969/j.issn.1001-0890.2012.05.023
    [10]Fan Honghai, Feng Guangqing, Xiao Wei, Ma Jinliang, Ye Zhi, Zhao Cong. New Approach for Real-Time Bit Wear Monitoring Based on the Theory of MSE[J]. Petroleum Drilling Techniques, 2012, 40(3): 116-120. DOI: 10.3969/j.issn.1001-0890.2012.03.024
  • Cited by

    Periodical cited type(17)

    1. 陈小璐,张雨菲,罗伟疆,蔡卓林,鱼文军. 水平井体积压裂套管变形预测方法与防控措施. 新疆石油天然气. 2025(01): 61-68 .
    2. 尹奥博,李军,连威,张辉. 页岩气水平井套管变形机理及控制方法研究进展. 新疆石油天然气. 2025(01): 50-60 .
    3. 闫炎,蔡萌,马文海,张晓川,韩礼红,刘永红. 盐岩蠕变特征对井筒形变量的影响规律. 西安石油大学学报(自然科学版). 2024(03): 42-49 .
    4. 赵晋斌,张竣淞,程志恒,赵渝龙,刘洪汰,季长江. 基于微破裂能量扫描技术的煤层水力压裂裂缝展布形态研究. 煤炭工程. 2024(S1): 97-103 .
    5. 刘功威,宋光鑫,赵映辉. 水力压裂过程中的页岩气套管螺纹接头刺穿原因分析. 石油管材与仪器. 2023(02): 85-90 .
    6. 李陪,曾波,杨登波,陆应辉,聂靖雯,聂华富. 川南页岩气套管变形井桥塞射孔联作技术. 油气井测试. 2023(03): 37-42 .
    7. 孟胡,吕振虎,王晓东,张辉,申颍浩,葛洪魁. 基于压裂参数优化的套管剪切变形控制研究. 断块油气田. 2023(04): 601-608 .
    8. 张伟,李军,张慧,王典,李托,刘怀亮. 断层滑移对套管剪切变形的影响规律及防控措施. 断块油气田. 2023(05): 734-742 .
    9. 王俊博,田继军,李飞,张轩铭,季东良,王先美,李鑫. 准噶尔盆地南缘煤层气井管柱腐蚀原因及防腐策略. 特种油气藏. 2023(05): 151-157 .
    10. 陈朝伟,周文高,项德贵,谭鹏,宋建,陈晓军,任乐佳,黄浩. 预防页岩气套变的橡胶组合套管研制及其抗剪切性能评价. 天然气工业. 2023(11): 131-136 .
    11. 陈朝伟,项德贵. 四川盆地页岩气开发套管变形一体化防控技术. 中国石油勘探. 2022(01): 135-141 .
    12. 郭大立,唐乙芳,李曙光,张天翔,康芸玮. 基于BP-PSO的致密气压裂施工参数优化. 科学技术与工程. 2022(19): 8304-8312 .
    13. 刘鹏林,李军,席岩,连威,张小军,郭雪利. 页岩断层滑移量计算模型及影响因素研究. 石油机械. 2022(08): 74-80 .
    14. 李晓蓉,刘旭丰,张毅,郭放,王鑫栋,冯永存. 基于分布式光纤声传感的油气井工程监测技术应用与进展. 石油钻采工艺. 2022(03): 309-320 .
    15. 高德利,刘奎,王宴滨,刘金海,李轩. 页岩气井井筒完整性失效力学机理与设计控制技术若干研究进展. 石油学报. 2022(12): 1798-1812 .
    16. 肖勇军,宋毅,陆应辉,蒋佳玉,唐勇,马自强,许嘉乐,聂华富. 川南页岩气套管变形井分簇射孔管串泵送工艺分析. 石油矿场机械. 2021(05): 66-72 .
    17. 张慧,李军,张小军,张鑫,连威. 页岩气井压裂液进入断层的途径及防控措施. 断块油气田. 2021(06): 750-754+760 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (8477) PDF downloads (14421) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return