ZHANG Yiqun, YU Chao, CHENG Guangming, SONG Xianzhi, ZHAO Kexian. Experimental and Numerical Study of the Explosive Forming of Slotted Metal Pipes for Energy-Gathered Nesting Plugging[J]. Petroleum Drilling Techniques, 2020, 48(6): 54-60. DOI: 10.11911/syztjs.2020107
Citation: ZHANG Yiqun, YU Chao, CHENG Guangming, SONG Xianzhi, ZHAO Kexian. Experimental and Numerical Study of the Explosive Forming of Slotted Metal Pipes for Energy-Gathered Nesting Plugging[J]. Petroleum Drilling Techniques, 2020, 48(6): 54-60. DOI: 10.11911/syztjs.2020107

Experimental and Numerical Study of the Explosive Forming of Slotted Metal Pipes for Energy-Gathered Nesting Plugging

More Information
  • Received Date: March 08, 2020
  • Revised Date: August 05, 2020
  • Available Online: September 03, 2020
  • At present, there is still no effective solution to the cavity-type lost circulation in the drilling and completion of oil, gas and geothermal resources. In the light of this, a energy-gathered nesting plugging technique was proposed, and experiments for explosive forming and the optimization of metal bridge strings were also conducted. The technique and its theory were first introduced, a numerical model for the explosive forming of slotted metal pipes was then established, the shapes of metal pipes slotted in different types and in different materials were analyzed. Finally, ground experimental device was designed, the experimental methods were determined, and according to the simulation results, ground experiments were conducted in air, submerged water, and submerged confining environments respectively. The numerical results show that the series 5 aluminum alloy pipe with straight slotting patterns, exhibits a suitable tensile deformation without failure after explosion, and can be utilized as the material for nesting bridge. The experimental device can effectively simulate the real downhole environment, providing conditions for further study on the the amount of explosives of different nesting tools. The research results show that the energy-gathered nesting plugging technology could be expected to better solve the technical problems that the plugging materials are difficult to retain and not easy to form the artificial well wall. By using it, the success rate of plugging of cavity-type lost circulation could be improved and the cost of drilling and completion could be reduced.
  • [1]
    赵巍,李波,高云文,等. 诱导性裂缝防漏堵漏钻井液研究[J]. 油田化学, 2013, 30(1): 1–4.

    ZHAO Wei, LI Bo, GAO Yunwen, et al. Study of lost circulation protection and control drilling fluid for induced cracks[J]. Oilfield Chemistry, 2013, 30(1): 1–4.
    [2]
    王中华. 复杂漏失地层堵漏技术现状及发展方向[J]. 中外能源, 2014, 19(1): 39–48.

    WANG Zhonghua. The status and development direction of plugging technology for complex formation lost circulation[J]. Sino-Global Energy, 2014, 19(1): 39–48.
    [3]
    ZEIDOUNI M. Analytical model of well leakage pressure perturbations in a closed aquifer system[J]. Advances in Water Resources, 2014, 69: 13–22. doi: 10.1016/j.advwatres.2014.03.004
    [4]
    FIDAN E, BABADAGLI T, KURU E. Use of cement as lost circulation material-field case studies[R]. SPE 88005, 2004.
    [5]
    王书峰. 井漏的预防和处理[J]. 科技信息, 2012(35): 459.

    WANG Shufeng. The prevention and statement of lost circula-tion[J]. Science & Technology Information, 2012(35): 459.
    [6]
    刘金华,刘四海,陈小锋,等. 承压堵漏技术研究及其应用[J]. 断块油气田, 2011, 18(1): 116–118, 125.

    LIU Jinhua, LIU Sihai, CHEN Xiaofeng, et al. Study and application of pressure bearing and lost circulation technique[J]. Fault-Block Oil & Gas Field, 2011, 18(1): 116–118, 125.
    [7]
    王贵,蒲晓林. 提高地层承压能力的钻井液堵漏作用机理[J]. 石油学报, 2010, 31(6): 1009–1012.

    WANG Gui, PU Xiaolin. Plugging mechanism of drilling fluid by enhancing wellbore pressure[J]. Acta Petrolei Sinica, 2010, 31(6): 1009–1012.
    [8]
    郝惠军,田野,贾东民,等. 承压堵漏技术的研究与应用[J]. 钻井液与完井液, 2011, 28(6): 14–16.

    HAO Huijun, TIAN Ye, JIA Dongmin, et al. Research and application on technology of mud loss control under pressure[J]. Drilling Fluid & Completion Fluid, 2011, 28(6): 14–16.
    [9]
    熊继有,程仲,薛亮,等. 随钻防漏堵漏技术的研究与应用进展[J]. 钻采工艺, 2007, 30(2): 7–10, 19.

    XIONG Jiyou, CHENG Zhong, XUE Liang, et al. Research and application of leak resistance and sealing technology while drilling[J]. Drilling & Production Technology, 2007, 30(2): 7–10, 19.
    [10]
    李家学,黄进军,罗平亚,等. 随钻防漏堵漏技术研究[J]. 钻井液与完井液, 2008, 25(3): 25–28.

    LI Jiaxue, HUANG Jinjun, LUO Pingya, et al. Research of leak resistance and sealing technology while drilling[J]. Drilling Fluid & Completion Fluid, 2008, 25(3): 25–28.
    [11]
    吴明畏,张伟,刘进余,等. 可膨胀波纹管堵漏技术应用[J]. 石油矿场机械, 2013, 42(11): 72–75.

    WU Mingwei, ZHANG Wei, LIU Jinyu, et al. Expandable bellows plugging technology applied research[J]. Oil Field Equipment, 2013, 42(11): 72–75.
    [12]
    张德龙,翁炜,黄玉文,等. 波纹管堵漏技术及其在地质钻探领域的应用研究[J]. 探矿工程(岩土钻掘工程), 2012, 39(5): 28–30, 52.

    ZHANG Delong, WENG Wei, HUANG Yuwen, et al. Research on bellows sealing technology and the application in geological drilling field[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2012, 39(5): 28–30, 52.
    [13]
    温峥,杨双春,潘一,等. 堵漏技术的研究进展[J]. 油田化学, 2016, 33(1): 186–190.

    WEN Zheng, YANG Shuangchun, PAN Yi, et al. Research progress of plugging technology[J]. Oilfield Chemistry, 2016, 33(1): 186–190.
    [14]
    冯帅,张虎平,程康,等. 化学堵漏工艺技术优化及推广[J]. 石油化工应用, 2017, 36(12): 74–77.

    FENG Shuai, ZHANG Huping, CHENG Kang, et al. Optimization and promotion of chemical plugging process technology[J]. Petrochemical Industry Application, 2017, 36(12): 74–77.
    [15]
    王勇,蒋官澄,杜庆福,等. 超分子化学堵漏技术研究与应用[J]. 钻井液与完井液, 2018, 35(3): 48–53.

    WANG Yong, JIANG Guancheng, DU Qingfu, et al. Study and application of supramolecule chemical LCM technology[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 48–53.
    [16]
    鲁政权. 钻井液堵漏材料分析与防漏堵漏技术探讨[J]. 科技创新与应用, 2019(28): 157–158.

    LU Zhengquan. Analysis of plugging material of drilling fluid and discussion of plugging technology[J]. Technology Innovation and Application, 2019(28): 157–158.
    [17]
    MAJIDI R, MISKA S Z, ZHANG Jianguo. Fingerprint of mud losses into natural and induced fractures[R]. SPE 143854, 2011.
    [18]
    LAVROV A, TRONVOIL J. Mud loss into a single fracture during drilling of petroleum wells: modeling approach: the 6th International Conference on Analysis of Discontinuous Deformation, Trondheim, 2003[C]. Netherlands: Swets Zeitlinger Publishers, 2003: 189-198.
    [19]
    LAVROV A, TRONVOIL J. Modeling mud loss in fractured formations[R]. SPE 88700, 2004.
    [20]
    LAVROV A, TRONVOIL J. Mechanics of borehole ballooning in naturally-fractured formations[R]. SPE 93747, 2005.
    [21]
    MAJIDI R, MISKA S Z, YU M. Quantitative analysis of mud losses in naturally fractured reservoirs: the effect of rheology[J]. SPE Drilling & Completion, 2010, 25(4): 509–517.
    [22]
    LIETARD O, UNWIN T, GUILLOT D J, et al. Fracture width logging while drilling and drilling mud/loss-circulation-material selection guidelines in naturally fractured reservoirs[J]. SPE Drilling & Completion, 1999, 14(3): 168–177.
    [23]
    XIA Yang, JIN Yan, CHEN Mian, et al. Hydrodynamic modeling of mud loss controlled by the coupling of discrete fracture and matrix[J]. Journal of Petroleum Science and Engineering, 2015, 129: 254–267. doi: 10.1016/j.petrol.2014.07.026
    [24]
    中国石油大学(北京).聚能捆绑型筑巢堵漏固壁装置及其在溶洞堵漏中的应用: CN106930723B[P].2019-01-18.

    China University of Petroleum(Beijing). Energy-gathered bundle type nesting plugging and wall reinforcing device and application of plugging in karst cave leakage: CN106930723B[P]. 2019-01-18.
    [25]
    ESMAEILI M, TAVAKOLI B. Finite element method simulation of explosive compaction in saturated loose sandy soils[J]. Soil Dynamics and Earthquake Engineering, 2019, 116(1): 446–459.
    [26]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures: proceedings the 7th International Symposium on Ballistics, The Hague, April 19-21, 1983[C].
  • Related Articles

    [1]CUI Zhuang, HOU Bing. A Numerical Simulation for Damage Mechanical Behavior of Brazilian Splitting Test of Deep Shales[J]. Petroleum Drilling Techniques, 2024, 52(2): 218-228. DOI: 10.11911/syztjs.2024032
    [2]ZHU Zuyang. Numerical Simulation and Test of Velocity Imaging for Remote Detection Acoustic Logging While Drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35-40. DOI: 10.11911/syztjs.2022113
    [3]ZHANG Yiqun, HU Xiao, WU Xiaoya, LI Gensheng, TIAN Shouceng, ZHAO Shuai. Experimental and Numerical Simulation Study of Natural Gas Hydrate Erosion by Swirling Jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24-33. DOI: 10.11911/syztjs.2022046
    [4]LIU Jianhua, LING Wenxue, WANG Heng. Study on Rock Breaking Mechanism and Field Test of Triangular Prismatic PDC Cutters[J]. Petroleum Drilling Techniques, 2021, 49(5): 46-50. DOI: 10.11911/syztjs.2021040
    [5]ZHANG Yifei, WEI Yong, YU Houquan, CHEN Qiang, LIU Guoquan, ZHANG Xue. Simulation and Experimental Studies on the Influencing Factors of a Thermal Flowmeter with Constant Temperature Difference[J]. Petroleum Drilling Techniques, 2021, 49(2): 121-126. DOI: 10.11911/syztjs.2021023
    [6]MA Lanrong, CHENG Guangming, DAI Wenchao. Design and Testing of the Stimulation Tool for Pinnate Branch Tubes[J]. Petroleum Drilling Techniques, 2020, 48(4): 72-77. DOI: 10.11911/syztjs.2020061
    [7]XIE Han, KUANG Yuchun, QIN Chao. The Finite Element Simulation and Test of Rock Breaking by Non-Planar PDC Cutting Cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73. DOI: 10.11911/syztjs.2019043
    [8]Ke Ke, Zhang Hui, Zhou Yuyang, Wang Lei, Feng Shilun. The Development of Testing Simulators for Conductor Jets Running in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 33-37. DOI: 10.11911/syztjs.201502006
    [9]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
    [10]Liu Gang, Sun Jin, He Baosheng, Tian Ji, Geng Zhanli. Design and Field Test of Surface Monitoring System for Directional Wells Anti-Collision[J]. Petroleum Drilling Techniques, 2012, 40(1): 7-11. DOI: 10.3969/j.issn.1001-0890.2012.01.002
  • Cited by

    Periodical cited type(25)

    1. 胡宏涛,管震,张宝权,赖刚,邹卓峰,曾杰. 基于实时数据的钻井KPI自动分析研究. 中国设备工程. 2024(24): 76-79 .
    2. 付群超,曾烃详,陈沛,钟鹏,王瑞科,杜坤. 基于随机森林回归模型的钻井作业周期预测. 录井工程. 2024(04): 39-47 .
    3. 王学强,樊建春,杨哲,罗双平,徐志凯,蔡正伟,熊毅. 树增强型贝叶斯模型提升溢流预警时间提前量. 石油钻采工艺. 2024(04): 413-428 .
    4. 晏琰,段慕白,黄浩. 基于趋势线法的钻井风险预警技术研究. 钻采工艺. 2023(02): 170-174 .
    5. 何淼,陈欢,张党生,许明标,陈鑫. 基于深度自编码器的钻井工况智能识别研究. 长江大学学报(自然科学版). 2023(03): 84-93 .
    6. 梅舜豪. 基于人工智能的钻井工程异常预警系统研究及应用. 石油化工自动化. 2023(04): 59-63 .
    7. 张菲菲,崔亚辉,于琛,张同颖,陈俊,颜寒. 基于机器学习的钻井工况识别技术现状及发展. 长江大学学报(自然科学版). 2023(04): 53-65+143 .
    8. 张禾,池紫欣. 基于BSMOTE-SVM算法的溢流风险评价. 控制工程. 2023(12): 2173-2178 .
    9. 夏文鹤,赵宗旭,李皋,李永杰,李宬晓,陈向东. 基于非线性分类网络的气体钻井风险智能识别方法. 信息与控制. 2023(04): 455-465 .
    10. 毛光黔,宋先知,丁燕,崔猛,刘雨龙,祝兆鹏. 基于梯度提升决策树算法的钻井工况识别方法. 石油钻采工艺. 2023(05): 532-539 .
    11. 王海涛,王建华,邱晨,毛金涛,李辉. 基于双向长短期记忆循环神经网络和条件随机场的钻井工况识别方法. 石油钻采工艺. 2023(05): 540-547+554 .
    12. Wen-He Xia,Zong-Xu Zhao,Cheng-Xiao Li,Gao Li,Yong-Jie Li,Xing Ding,Xiang-Dong Chen. Intelligent risk identification of gas drilling based on nonlinear classification network. Petroleum Science. 2023(05): 3074-3084 .
    13. Ying Qiao,Hong-Min Xu,Wen-Jun Zhou,Bo Peng,Bin Hu,Xiao Guo. A BiGRU joint optimized attention network for recognition of drilling conditions. Petroleum Science. 2023(06): 3624-3637 .
    14. 韩玉娇. 基于AdaBoost机器学习算法的大牛地气田储层流体智能识别. 石油钻探技术. 2022(01): 112-118 . 本站查看
    15. 胡万俊,夏文鹤,李永杰,蒋俊,李皋,陈一健. 气体钻井随钻安全风险智能识别方法. 石油勘探与开发. 2022(02): 377-384 .
    16. 刘胜娃,曹湘华. 基于决策树的钻井工况智能识别方法. 新型工业化. 2022(01): 28-30 .
    17. HU Wanjun,XIA Wenhe,LI Yongjie,JIANG Jun,LI Gao,CHEN Yijian. An intelligent identification method of safety risk while drilling in gas drilling. Petroleum Exploration and Development. 2022(02): 428-437 .
    18. 王钰豪,郝家胜,张帆,魏强,彭知南,段慕白. 钻井溢流风险的自适应LSTM预警方法. 控制理论与应用. 2022(03): 441-448 .
    19. 殷启帅,杨进,曹博涵,龙洋,陈柯锦,范梓伊,贺馨悦. 基于长短期记忆神经网络的深水钻井工况实时智能判别模型. 石油钻采工艺. 2022(01): 97-104 .
    20. 胡志强,杨进,王磊,侯绪田,张桢翔,姜萌磊. 钻井工况智能识别与时效分析技术. 石油钻采工艺. 2022(02): 241-246 .
    21. 赵春兰,屈瑶,王兵,范翔宇,赵鹏斐,李屹,何婷. 一种基于2D-CNN深度学习的钻井事故等级预测新方法. 天然气工业. 2022(12): 95-105 .
    22. 夏田,郭建斌,赵一号. 基于改进支持向量机的选区激光熔化参数优化的研究. 热加工工艺. 2021(04): 29-31+37 .
    23. 庞淼,雷银,卢杭,黄琦,何仕鹏. 降低钻井溢流智能化预警误报率的方法探索. 石油工业技术监督. 2021(10): 44-49 .
    24. 柳海啸,刘芳,代文星,冯一,巩永刚,李明明. 基于大数据分析技术的钻井提效实践. 石油钻采工艺. 2021(04): 436-441 .
    25. 刘兆年,赵颖,孙挺. 渤海区域基于数据驱动的钻井提速. 西南石油大学学报(自然科学版). 2020(06): 35-41 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (693) PDF downloads (59) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return