Citation: | CUI Zhuang, HOU Bing. A numerical simulation for damage mechanical behavior of Brazilian splitting test of deep shales [J]. Petroleum Drilling Techniques,2024, 52(2):218-228. DOI: 10.11911/syztjs.2024032 |
In order to investigate the mechanism between shale texture characteristics and tensile strength, a three-dimensional Brazilian splitting test numerical model was established by the cohesive element method. The effects of texture angle and strength on damage modes and tensile strength were studied, and the crack growth behavior was accurately analyzed using acoustic emission distribution characteristics. The results indicate that the numerical simulation outcomes of the Brazilian splitting test were basically in accordance with the experimental results. The cohesive element method can be used to predict the shale’s damage behavior. The damage modes of shale specimens are classified into six categories under the coupling of texture angle and strength. For shale specimens with central damage, the acoustic emission (AE) energy-displacement curves are dominated by a single-peak distribution type. For shale specimens with tension-shear mixed damage, the AE energy-displacement curves are dominated by a multiple-peak distribution type. The tensile strength of shale specimens is significantly anisotropic. As the texture strength increases, and the primary crack approaches the loading diameter direction, the tensile strength of the specimens gets higher under the same texture angle. The results of the study also reveal the damage mechanisms in deep shales and provide theoretical basis for the fracturing design for shale reservoirs.
[1] |
蒋廷学,肖博,沈子齐,等. 陆相页岩油气水平井穿层体积压裂技术[J]. 石油钻探技术,2023,51(5):8–14.
JIANG Tingxue, XIAO Bo, SHEN Ziqi, et al. Vertical penetration of network fracturing technology for horizontal wells in continental shale oil and gas[J]. Petroleum Drilling Techniques, 2023, 51(5): 8–14.
|
[2] |
朱海燕,焦子曦,刘惠民,等. 济阳坳陷陆相页岩油气藏组合缝网高导流压裂关键技术[J]. 天然气工业,2023,43(11):120–130.
ZHU Haiyan, JIAO Zixi, LIU Huimin, et al. A new high-conductivity combined network fracturing technology for continental shale oil and gas reservoirs in the Jiyang Depression[J]. Natural Gas Industry, 2023, 43(11): 120–130.
|
[3] |
付金华,郭雯,李士祥,等. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学,2021,32(12):1749–1761.
FU Jinhua, GUO Wen, LI Shixiang, et al. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749–1761.
|
[4] |
雷群,翁定为,管保山,等. 中美页岩油气开采工程技术对比及发展建议[J]. 石油勘探与开发,2023,50(4):824–831.
LEI Qun, WENG Dingwei, GUAN Baoshan, et al. Shale oil and gas exploitation in China: Technical comparison with US and development suggestions[J]. Petroleum Exploration and Development, 2023, 50(4): 824–831.
|
[5] |
NIANDOU H, SHAO J F, HENRY J P, et al. Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1): 3–16. doi: 10.1016/S1365-1609(97)80029-9
|
[6] |
WANG Jun, XIE Lingzhi, XIE Heping, et al. Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests[J]. Journal of Natural Gas Science and Engineering, 2016, 36(Part B): 1120-1129.
|
[7] |
VERVOORT A, MIN K B, KONIETZKY H, et al. Failure of transversely isotropic rock under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 343–352. doi: 10.1016/j.ijrmms.2014.04.006
|
[8] |
CHO J W, KIM H, JEON S, et al. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 158–169. doi: 10.1016/j.ijrmms.2011.12.004
|
[9] |
杨志鹏,何柏,谢凌志,等. 基于巴西劈裂试验的页岩强度与破坏模式研究[J]. 岩土力学,2015,36(12):3447–3455.
YANG Zhipeng, HE Bai, XIE Lingzhi, et al. Strength and failure modes of shale based on Brazilian test[J]. Rock and Soil Mechanics, 2015, 36(12): 3447–3455.
|
[10] |
张树文,鲜学福,周军平,等. 基于巴西劈裂试验的页岩声发射与能量分布特征研究[J]. 煤炭学报,2017,42(增刊2):346-353.
ZHANG Shuwen, XIAN Xuefu, ZHOU Junping, et al. Acoustic emission characteristics and the energy distribution of the shale in Brazilian splitting testing[J]. Journal of China Coal Society, 2017, 42(supplement 2): 346-353.
|
[11] |
崔壮,侯冰,付世豪,等. 页岩油致密储层一体化压裂裂缝穿层扩展特征[J]. 断块油气田,2022,29(1):111–117.
CUI Zhuang, HOU Bing, FU Shihao, et al. Fractures cross-layer propagation characteristics of integrated fracturing in shale oil tight reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 111–117.
|
[12] |
张丰收,吴建发,黄浩勇,等. 提高深层页岩裂缝扩展复杂程度的工艺参数优化[J]. 天然气工业,2021,41(1):125–135.
ZHANG Fengshou, WU Jianfa, HUANG Haoyong, et al. Technological parameter optimization for improving the complexity of hydraulic fractures in deep shale reservoirs[J]. Natural Gas Industry, 2021, 41(1): 125–135.
|
[13] |
HOU Bing, CUI Zhuang, DING Jihui, et al. Perforation optimization of layer-penetration fracturing for commingling gas production in coal measure strata[J]. Petroleum Science, 2022, 19(4): 1718–1734. doi: 10.1016/j.petsci.2022.03.014
|
[14] |
寇园园,陈军斌,聂向荣,等. 基于离散元方法的拉链式压裂效果影响因素分析[J]. 石油钻采工艺,2023,45(2):211–222.
KOU Yuanyuan, CHEN Junbin, NIE Xiangrong, et al. Analyzing the factors influencing zipper fracturing based on discrete element method[J]. Oil Drilling & Production Technology, 2023, 45(2): 211–222.
|
[15] |
张军,余前港,李玉伟,等. 夹层型致密储层密切割压裂多裂缝同步扩展机制[J]. 断块油气田,2023,30(3):480–487.
ZHANG Jun, YU Qiangang, LI Yuwei, et al. Multi-fracture synchronous propagation mechanism of dense cutting fracturing in interlayer tight reservoir[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 480–487.
|
[16] |
HOU Bing, CUI Zhuang. Vertical fracture propagation behavior upon supercritical carbon dioxide fracturing of multiple layers[J]. Engineering Fracture Mechanics, 2023, 277: 108913. doi: 10.1016/j.engfracmech.2022.108913
|
[17] |
王辉,李勇,曹树刚,等. 基于巴西劈裂实验的层状页岩断裂特征试验研究[J]. 采矿与安全工程学报,2020,37(3):604–612.
WANG Hui, LI Yong, CAO Shugang, et al. Experimental study on fracture characteristics of layered shale under Brazilian splitting tests[J]. Journal of Mining and Safety Engineering, 2020, 37(3): 604–612.
|
[18] |
TAVALLALI A, VERVOORT. Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 313–322. doi: 10.1016/j.ijrmms.2010.01.001
|
[19] |
CLAESSON J, BOHLOLI B. Brazilian test: Stress field and tensile strength of anisotropic rocks using an analytical solution[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8): 991–1004. doi: 10.1016/S1365-1609(02)00099-0
|
[20] |
ZHOU Junping, TIAN Shifeng, ZHOU Lei, et al. Effect of sub-/super-critical CO2 and brine exposure on the mechanical and acoustic emission characteristics of shale[J]. Journal of Natural Gas Science and Engineering, 2021, 90: 103921. doi: 10.1016/j.jngse.2021.103921
|
[21] |
WANG Chenyu, GENG Jiabo, ZHANG Dongming, et al. Investigation on damage evolution law of anisotropic shale at different hydraulic pressures[J]. Energy, 2023, 282: 128944. doi: 10.1016/j.energy.2023.128944
|
[22] |
位云生,林铁军,于浩,等. 基于嵌入黏聚单元法的页岩储层压裂缝网扩展规律[J]. 天然气工业,2022,42(10):74–83.
WEI Yunsheng, LIN Tiejun, YU Hao, et al. Propagation law of fracture network in shale reservoirs based on the embeded cohesive unit method[J]. Natural Gas Industry, 2022, 42(10): 74–83.
|
[1] | YANG Chunhe, WANG Lei, ZENG Yijin, GUO Yintong, YANG Guangguo, LIU Kui. A Laboratory Method for Evaluating the Bonding Tensile Strength of the Cement–Formation Interface Considering Multiple Factors[J]. Petroleum Drilling Techniques, 2023, 51(4): 48-54. DOI: 10.11911/syztjs.2023041 |
[2] | NIU Chengcheng, HOU Xutian, LI Yang. Triaxial Mechanical Tests and Multiple Regression Strength Analysis of Simalted Frozen Soil Sample from Mohe[J]. Petroleum Drilling Techniques, 2021, 49(3): 27-34. DOI: 10.11911/syztjs.2021049 |
[3] | LI Gongrang, YU Lei, LIU Zhendong, LI Hui, MING Yuguang. The Evaluation and Application of Lost Circulation Control by Elastic Mesh Materials[J]. Petroleum Drilling Techniques, 2021, 49(2): 48-53. DOI: 10.11911/syztjs.2021008 |
[4] | LI Shuai, CHEN Junbin, ZHAO Qinlei. Experimental Study on the Scale Effect Law of Shale Strength and Deformation under Different Loading Modes[J]. Petroleum Drilling Techniques, 2020, 48(5): 39-48. DOI: 10.11911/syztjs.2020075 |
[5] | FAN Song, LIANG Yi, WANG Lingyun, LEI Yu, SHI Haixia. Allowable Stress Calculation and Fatigue Life Prediction for H-Class Sucker Rods[J]. Petroleum Drilling Techniques, 2017, 45(6): 88-92. DOI: 10.11911/syztjs.201706016 |
[6] | WANG Feng, ZOU Zongming, HU Qingfu, WANG Jijun, MA Linhu. Research and Application of a Performance Calibration Method for a Double Shoulder Tool Joint[J]. Petroleum Drilling Techniques, 2017, 45(4): 71-74. DOI: 10.11911/syztjs.201704012 |
[7] | HU Qiong, CHE Qiang, REN Xiaoling. Pilot Tests on Thermal-Mechanical Composite Rock-Breaking Methods[J]. Petroleum Drilling Techniques, 2016, 44(1): 29-33. DOI: 10.11911/syztjs.201601006 |
[8] | Lin Yongxue, Gao Shuyang, Zeng Yijin. Evaluation and Analysis of Rock Strength for the Longmaxi Shale[J]. Petroleum Drilling Techniques, 2015, 43(5): 20-25. DOI: 10.11911/syztjs.201505004 |
[9] | Li Wei, Yan Tie, Chen Shichun, Cong Changjiang. Mechanism Analysis of Tooth Sink into Rock Based on Unified Strength Theory[J]. Petroleum Drilling Techniques, 2013, 41(4): 32-36. DOI: 10.3969/j.issn.1001-0890.2013.04.008 |
[10] | Liang Erguo, Li Zifeng, Zhao Jinhai. Model for Collapsing Strength Calculation of Worn Casing[J]. Petroleum Drilling Techniques, 2012, 40(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2012.02.008 |
1. |
王彪,李军,杨宏伟,詹家豪,张更,龙震宇. 基于工程参数变化趋势的溢流早期智能检测方法. 石油钻探技术. 2024(05): 145-153 .
![]() |