DING Wen, PENG Zhenhua, ZHANG Yuan, REN Xianghai, ZHANG Xin, WU Chao. Fatigue Analysis of HL Rod Based on Damage Mechanics[J]. Petroleum Drilling Techniques, 2019, 47(4): 47-53. DOI: 10.11911/syztjs.2019041
Citation: DING Wen, PENG Zhenhua, ZHANG Yuan, REN Xianghai, ZHANG Xin, WU Chao. Fatigue Analysis of HL Rod Based on Damage Mechanics[J]. Petroleum Drilling Techniques, 2019, 47(4): 47-53. DOI: 10.11911/syztjs.2019041

Fatigue Analysis of HL Rod Based on Damage Mechanics

More Information
  • Received Date: August 09, 2018
  • Revised Date: February 18, 2019
  • Available Online: March 14, 2019
  • In order to analyze the influence of a damaged HL-class sucker rod on its safety performance during the process of use, the fatigue damage evolution model of the sucker rod was established according to the principle of damage mechanics combined with the effective stress method with ANSYS finite element software to conduct numerical simulations for the residual fatigue life of HL-class sucker rod under three kinds of damages, namely crack, corrosion pit and eccentric wear. The effects of three damage influencing factors (shape, size, position, etc.) on the residual fatigue life of HL-class sucker rods were analyzed by an orthogonal test, and the relationship between the fatigue life of HL-class sucker rod and the influencing factors was determined by multiple regression method under three kinds of damages. The simulation results showed that for crack damage, the impacts on fatigue life could be listed from top to bottom as the crack position, angle, depth and width. For corrosion pit damage, the impacts listed were the pit position, depth and radius; for the eccentric wear damage, the impacts were the eccentric wear position, depth and length. The adjust decision coefficient of the regression relationship between the fatigue life of HL-class sucker rod and the influencing factors under the three kinds of damages were calculated to be 82.0%, 94.0% and 90.9%, respectively. The research results indicated that the damage position had an extremely significant effect on the fatigue life of HL-class sucker rod. The depth and angle of crack, the depth and radius of the corrosion pit, and the eccentric depth had significant effects on the fatigue life, and the crack width exhibited a certain influence. The regression relationship between the fatigue life of HL-class sucker rod and the influencing factors under three kinds of damages could provide a basis for judging the residual life of HL-class sucker rod.

  • [1]
    王少力,郑子元. 超高强度抽油杆在国内外的推广应用[J]. 石油矿场机械, 2008, 37(4): 24–27. doi: 10.3969/j.issn.1001-3482.2008.04.006

    WANG Shaoli, ZHENG Ziyuan. Domestic and foreign application of the super-strength sucker rod[J]. Oil Field Equipment, 2008, 37(4): 24–27. doi: 10.3969/j.issn.1001-3482.2008.04.006
    [2]
    高鹏. H级抽油杆柱力学特性及其设计方法研究[D]. 西安: 西安石油大学, 2014.

    GAO Peng. Research of grade H sucker rods string mechanical properties and its design method[D]. Xi’an: Xi’an Shiyou University, 2014.
    [3]
    徐蔼彦,陈举涛,袁良帅,等. HL级35CrMoA抽油杆杆体失效分析[J]. 焊管, 2017, 40(6): 34–37.

    XU Aiyan, CHEN Jutao, YUAN Liangshuai, et al. HL grade 35CrMoA sucker rod body failure analysis[J]. Welded Pipe and Tube, 2017, 40(6): 34–37.
    [4]
    张行, 赵军. 金属构件应用疲劳损伤力学[M]. 北京: 国防工业出版社, 1998: 1-9.

    ZHANG Xing, ZHAO Jun. Applied fatigue damage mechanics of metallic structural members[M]. Beijing: National Defense Industry Press, 1998: 1-9
    [5]
    唐雪松,杨继运,蒋持平,等. 轴对称构件疲劳寿命预测的损伤力学—附加荷载—有限元法[J]. 航空学报, 2002, 23(2): 97–101. doi: 10.3321/j.issn:1000-6893.2002.02.001

    TANG Xuesong, YANG Jiyun, JIANG Chiping, et al. Damage mechanics-additional load-finite element method for fatigue life prediction of axisymmetrical structural members[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2): 97–101. doi: 10.3321/j.issn:1000-6893.2002.02.001
    [6]
    熊先仁. 损伤力学的最新发展[J]. 江西电力职业技术学院学报, 2006, 19(1): 1–2. doi: 10.3969/j.issn.1673-0097.2006.01.001

    XIONG Xianren. Recent progress of damage mechanics[J]. Journal of Jiangxi Vocational and Technical College of Electricity, 2006, 19(1): 1–2. doi: 10.3969/j.issn.1673-0097.2006.01.001
    [7]
    林元华,张德平,骆发前,等. 抽油杆疲劳寿命计算研究[J]. 石油钻采工艺, 2005, 27(6): 66–69. doi: 10.3969/j.issn.1000-7393.2005.06.021

    LIN Yuanhua, ZHANG Deping, LUO Faqian, et al. Research on fatigue life calculation method of sucker rod[J]. Oil Drilling & Production Technology, 2005, 27(6): 66–69. doi: 10.3969/j.issn.1000-7393.2005.06.021
    [8]
    周瑞芬. 抽油机井抽油杆失效问题的损伤力学研究[D]. 大庆: 东北石油大学, 2011.

    ZHOU Ruifen. Study on damage mechanics of sucker rod failure of pumped well[D]. Daqing: Northeast Petroleum University, 2011.
    [9]
    秦庆忠. 抽油杆成形及疲劳损伤仿真研究[D]. 大庆: 大庆石油学院, 2010.

    QIN Qingzhong. Simulation research on sucker-rod forming and fatigue damage[D].Daqing: Daqing Petroleum Institute, 2010.
    [10]
    丁新星. 基于ANSYS的损伤力学–有效应力法预估构件寿命[D]. 秦皇岛: 燕山大学, 2011.

    DING Xinxing. The actual stress method based on damage mechanics to predict life on ANSYS platform[D]. Qinhuangdao: Yanshan University,2011.
    [11]
    董赟,蔡敢为,郑战光,等. 基于损伤力学的疲劳寿命和裂纹扩展的数值分析[J]. 中国机械工程, 2010, 21(20): 2412–2415.

    DONG Yun, CAI Ganwei, ZHENG Zhanguang, et al. Numerical analyses of fatigue life and crack growth based on damage mechanics[J]. China Mechanical Engineering, 2010, 21(20): 2412–2415.
    [12]
    李大建,陆梅,郭靖,等. H级抽油杆疲劳性能试验分析[J]. 石油矿场机械, 2015, 44(12): 42–44, 73. doi: 10.3969/j.issn.1001-3482.2015.12.010

    LI Dajian, LU Mei, GUO Jing, et al. Fatigue test analysis of H sucker rod[J]. Oil Field Equipment, 2015, 44(12): 42–44, 73. doi: 10.3969/j.issn.1001-3482.2015.12.010
    [13]
    王军,史交齐,姬丙寅. HL级抽油杆性能对比研究[J]. 石油工业技术监督, 2017, 33(5): 31–33. doi: 10.3969/j.issn.1004-1346.2017.05.008

    WANG Jun, SHI Jiaoqi, JI Bingyin. Comparative study on performance of HL-class sucker rod[J]. Technology Supervision in Petroleum Industry, 2017, 33(5): 31–33. doi: 10.3969/j.issn.1004-1346.2017.05.008
    [14]
    LEMAITRE J. A course on damage mechanics[M]. Heidelberg: Springer-Verlag, 1996.
    [15]
    王玄静. 正交试验设计的应用及分析[J]. 兰州文理学院学报(自然科学版), 2016, 30(1): 17–22. doi: 10.3969/j.issn.2095-6991.2016.01.005

    WANG Xuanjing. Application and analysis of orthogonal experimental design[J]. Journal of Lanzhou University of Arts and Science (Natural Sciences Edition), 2016, 30(1): 17–22. doi: 10.3969/j.issn.2095-6991.2016.01.005
    [16]
    马喜平,侯代勇,代磊阳,等. 共聚物钻井液降滤失剂的合成与性能评价[J]. 钻井液与完井液, 2015, 32(2): 39–42.

    MA Xiping, HOU Daiyong, DAI Leiyang, et al. Synthesis and evaluation of copolymer filter loss reducer[J]. Drilling Fluid & completion Fluid, 2015, 32(2): 39–42.
    [17]
    余东合,于柏慧,车航,等. 乌里雅斯太油田太27断块整体压裂数值模拟[J]. 石油钻采工艺, 2017, 39(1): 77–82.

    YU Donghe, YU Baihui, CHE Hang, et al. Numerical simulation on overall fracturing of fault block Tai 27 in Wuliyasitai Oilfield[J]. Oil Drilling & Production Technology, 2017, 39(1): 77–82.
    [18]
    胡琴,李志强,任航. 模糊正交法在弧形盘式齿破岩性能评价中的应用[J]. 断块油气田, 2019, 26(3): 389–393.

    HU Qin, LI Zhiqiang, REN Hang. Application of fuzzy orthogona-lization to rock-breaking performance of arc disc teeth[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 389–393.
    [19]
    史树有,杨胜来,张宏丹. 施工因素对微生物驱油效果影响的物理模拟研究[J]. 石油钻探技术, 2013, 41(1): 93–97.

    SHI Shuyou, YANG Shenglai, ZHANG Hongdan. Physical simulation study on effect of operation factors on MEOR[J]. Ptroleum Drilling Techniques, 2013, 41(1): 93–97.
  • Related Articles

    [1]NIU Chengcheng, HOU Xutian, LI Yang. Triaxial Mechanical Tests and Multiple Regression Strength Analysis of Simalted Frozen Soil Sample from Mohe[J]. Petroleum Drilling Techniques, 2021, 49(3): 27-34. DOI: 10.11911/syztjs.2021049
    [2]LI Xin, MI Jintai, ZHANG Wei, YAO Jinzhi, LI Sanguo. Design and Test Verification of NMR Fluid Analysis Device for Downhole Logging While Drilling[J]. Petroleum Drilling Techniques, 2020, 48(2): 130-134. DOI: 10.11911/syztjs.2020027
    [3]GUO Xianwei, RU Dajun, WANG Haiyan, YANG Chun, LIU Zhixuan, HAO Nan. Cause Analysis on Abnormal Pulse Signals of BH-VDT Vertical Drilling Tool[J]. Petroleum Drilling Techniques, 2018, 46(3): 59-64. DOI: 10.11911/syztjs.2018044
    [4]YUAN Haiping, TAO Changzhou, GAO Yan, XIA Yulei. A Method to Improve the Accuracy of Friction Calculations for HPG Fracturing Fluid[J]. Petroleum Drilling Techniques, 2017, 45(5): 108-112. DOI: 10.11911/syztjs.201705019
    [5]FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017
    [6]Lin Yongxue, Gao Shuyang, Zeng Yijin. Evaluation and Analysis of Rock Strength for the Longmaxi Shale[J]. Petroleum Drilling Techniques, 2015, 43(5): 20-25. DOI: 10.11911/syztjs.201505004
    [7]Xu Honglin, Zhang Zhi, Shi Taihe, Xiong Jiyou. Stress Analysis of the Cement Sheath under both Pressure and Temperature[J]. Petroleum Drilling Techniques, 2014, 42(6): 45-48. DOI: 10.11911/syztjs.201406009
    [8]Jin Yequan, Hu Man, Wu Qian, Ji Yongqiang. Analysis of Deepwater BOP Failure in the Macondo Well Accident[J]. Petroleum Drilling Techniques, 2014, 42(4): 53-58. DOI: 10.3969/j.issn.1001-0890.2014.04.010
    [9]Wei Liao, Han Feng, Chen Tao, Guo Zhaohui, Zhu Yujie. Analysis and Experimental Research on Erosion of Cementing Sliding Sleeve[J]. Petroleum Drilling Techniques, 2014, 42(3): 108-111. DOI: 10.3969/j.issn.1001-0890.2014.03.020
    [10]Chen Mian, Jin Yan. Shale Gas Fracturing Technology Parameters Optimization Based on Core Analysis[J]. Petroleum Drilling Techniques, 2012, 40(4): 7-12. DOI: 10.3969/j.issn.1001-0890.2012.04.002
  • Cited by

    Periodical cited type(1)

    1. 冷光耀. 空气和CO_2辅助蒸汽吞吐室内实验研究. 油田化学. 2018(03): 447-450+479 . DOI:10.19346/j.cnki.1000-4092.2018.03.013

    Other cited types(0)

Catalog

    Article Metrics

    Article views (5331) PDF downloads (41) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return