Citation: | WU Shiwei, LIU Dejun, ZHAO Yang, WANG Xu, FENG Xue, LI Yang. Finite-Element Forward Modeling of Electromagnetic Response of Hydraulic Fractures in Layered Medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132-138. DOI: 10.11911/syztjs.2022060 |
[1] |
霍玉雁,岳喜洲,孙建孟. 测井资料在压裂设计中的应用[J]. 测井技术,2008,32(5):446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014
HUO Yuyan, YUE Xizhou, SUN Jianmeng. Application of logging data in fracturing design[J]. Well Logging Technology, 2008, 32(5): 446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014
|
[2] |
REN Yi, HUANG Weifeng, LIU Qinghuo, et al. Accurate fracture scattering simulation by thin dielectric sheet-based surface integral equation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1448–1451. doi: 10.1109/LGRS.2016.2591079
|
[3] |
DAI Junwen, FANG Yuan, ZHOU Jianyang, et al. Analysis of electromagnetic induction for hydraulic fracture diagnostics in open and cased boreholes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 264–271. doi: 10.1109/TGRS.2017.2746346
|
[4] |
YAN Liangjun, CHEN Xiaoxiong, TANG Hao, et al. Continuous TDEM for monitoring shale hydraulic fracturing[J]. Applied Geophysics, 2018, 15(1): 26–34. doi: 10.1007/s11770-018-0661-1
|
[5] |
ZHANG Liming, QI Ji, LI Lixin, et al. A forward modeling method based on electromagnetic theory to measure the parameters of hydraulic fracture[J]. Fuel, 2019, 251: 466–473. doi: 10.1016/j.fuel.2019.04.075
|
[6] |
YANG Kai, TORRES-VERDÍN C, YILMAZ A E. Detection and quantification of three-dimensional hydraulic fractures with horizontal borehole resistivity measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4605–4615. doi: 10.1109/TGRS.2015.2402656
|
[7] |
HUANG Weifeng, WANG Hanming, ZHAN Qiwei, et al. Thin dielectric sheet-based surface integral equation for the scattering simulation of fractures in a layered medium[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7606–7612. doi: 10.1109/TGRS.2019.2914611
|
[8] |
LI Yang, LIU Dejun, ZHAI Ying, et al. 3-D FEM azimuth forward modeling of hydraulic fractures based on electromagnetic theory[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 246–250. doi: 10.1109/LGRS.2020.2970441
|
[9] |
仵杰,任垚煜,贺秋利,等. 电磁远探测仪器参数设计[J]. 西安石油大学学报(自然科学版),2021,36(1):105–112.
WU Jie, REN Yaoyu, HE Qiuli, et al. Parameter design of remote detection tool with electromagnetic method[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2021, 36(1): 105–112.
|
[10] |
冯硕,刘得军,张颖颖,等. 基于COMSOL的井地电阻率正演研究[J]. 断块油气田,2013,20(5):589–592.
FENG Shuo, LIU Dejun, ZHANG Yingying, et al. Study on borehole-to-ground resistivity forward modeling based on COMSOL[J]. Fault-Block Oil & Gas Field, 2013, 20(5): 589–592.
|
[11] |
ANDERSON B, GIANZERO S. Mathematical theory for the fields due to a finite a. c. coil in an infinitely thick bed with an arbitrary number of co-axial layers[J]. The Log Analyst, 1984, 25(2): SPWLA–1984-vXXVn2a3.
|
[12] |
黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132
HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
|
[13] |
李辉,刘得军,刘彦昌,等. 自适应hp-FEM在随钻电阻率测井仪器响应数值模拟中的应用[J]. 地球物理学报,2012,55(8):2787–2797. doi: 10.6038/j.issn.0001-5733.2012.08.030
LI Hui, LIU Dejun, LIU Yanchang, et al. Application of self-adaptive hp-FEM in numerical simulation of resistivity logging-while-drilling[J]. Chinese Journal of Geophysics, 2012, 55(8): 2787–2797. doi: 10.6038/j.issn.0001-5733.2012.08.030
|
[14] |
李辉,刘得军,刘悦,等. 基于自适应hp-FEM的过套管电阻率测井仪器响应数值模拟[J]. 地球物理学进展,2013,28(6):3243–3253. doi: 10.6038/pg20130652
LI Hui, LIU Dejun, LIU Yue, et al. Numerical simulation of TCRT based on self-adaptive hp-FEM[J]. Progress in Geophysics, 2013, 28(6): 3243–3253. doi: 10.6038/pg20130652
|
[15] |
谢媛,刘得军,李彩芳,等. 利用随钻电磁波测井探测直井水力裂缝的正演模拟[J]. 石油钻探技术,2020,48(2):123–129. doi: 10.11911/syztjs.2019133
XIE Yuan, LIU Dejun, LI Caifang, et al. Forward modeling in hydraulic fracture detection by means of electromagnetic wave logging while drilling in vertical wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123–129. doi: 10.11911/syztjs.2019133
|
[16] |
朱庚雪,刘得军,张颖颖,等. 基于hp-FEM的随钻电磁波测井仪器响应正演分析[J]. 石油钻探技术,2015,43(2):63–70.
ZHU Gengxue, LIU Dejun, ZHANG Yingying, et al. Forward modeling of responses of an ELWD tool based on hp-FEM[J]. Petroleum Drilling Techniques, 2015, 43(2): 63–70.
|
[17] |
LIU Dejun, MA Zhonghua, XING Xiaonan, et al. Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM[J]. Applied Geophysics, 2013, 10(1): 97–108. doi: 10.1007/s11770-013-0368-2
|
[18] |
SHARMA M M, BASU S. Fracture diagnosis using electromagnetic methods: United States Patent Application 20160282502[P]. 2016-09-29.
|
[19] |
PARDO D, TORRES-VERDÍN C, PASZYNSKI M. Numerical simulation of 3D EM borehole measurements using an hp-adaptive goal-oriented finite-element formulation[M]//HARDAGE B. SEG Technical Program Expanded Abstracts 2007. Tulsa: Society of Exploration Geophysicists, 2007: 653–657.
|
[20] |
杨震,于其蛟,马清明. 基于拟牛顿法的随钻方位电磁波电阻率仪器响应实时反演与现场试验[J]. 石油钻探技术,2020,48(3):120–126. doi: 10.11911/syztjs.2020025
YANG Zhen, YU Qijiao, MA Qingming. Real time inversion and field test of LWD azimuthal electromagnetic waves based on quasi-newton method[J]. Petroleum Drilling Techniques, 2020, 48(3): 120–126. doi: 10.11911/syztjs.2020025
|
[21] |
孟昆,刘迪仁,徐观佑,等. 泥页岩储层水平井随钻电磁波电阻率测井响应特性[J]. 断块油气田,2018,25(4):464–468.
MENG Kun, LIU Diren, XU Guanyou, et al. Response characteristics of electromagnetic wave resistivity LWD tool of muddy shale fractured reservoir in horizontal well[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 464–468.
|
1. |
牛彩云,张磊,魏韦,张磊,郑刚,邓泽鲲,李明江. 鄂尔多斯页岩油水平井闷排采设计与实践——以陇东地区庆城油田长7段为例. 石油地质与工程. 2025(01): 7-12 .
![]() | |
2. |
汪杰,赵康佳,龚润璞,续化蕾,江厚顺. 压裂支撑剂在迂曲粗糙裂缝中运移沉降规律研究. 长江大学学报(自然科学版). 2025(01): 81-90 .
![]() | |
3. |
马兵,徐创朝,陈强,李晓燕,张同伍. 庆城页岩油泵入式光纤监测技术实践. 石油机械. 2024(01): 118-123 .
![]() | |
4. |
冯永超,李大雷. 泾河油田页岩油储层井壁失稳机理研究. 石油地质与工程. 2024(01): 122-126 .
![]() | |
5. |
姚兰兰,杨正明,李海波,周体尧,张亚蒲,杜猛,侯海涛. 夹层型页岩油储层CO_2驱替特征——以鄂尔多斯盆地长7页岩为例. 大庆石油地质与开发. 2024(02): 101-107 .
![]() | |
6. |
马宇彬. 低渗透储层安全环保石油压裂技术探析. 当代化工研究. 2024(04): 106-108 .
![]() | |
7. |
田建超,李高峰,贾江芬,李凝,修书志,李伟杰,戴坤秀. 含天然裂缝的页岩油储层裂缝扩展规律研究. 能源与环保. 2024(05): 105-111 .
![]() | |
8. |
赵朝阳,林铁军,朱泽林,于浩,练章华. 页岩油水平井上提下放过程中套管力学特征分析. 石油管材与仪器. 2024(03): 33-38+112 .
![]() | |
9. |
陈鹏,王正圆,郑德堂,赵新学. 浅谈水平井压裂技术特点及发展趋势. 中国设备工程. 2024(16): 231-234 .
![]() | |
10. |
王国栋. 水平井连续油管带压钻塞技术的研究及应用——以HN油田XX凹陷为例. 石油地质与工程. 2024(05): 105-111 .
![]() | |
11. |
马立军,梁晓伟,贾剑波,何启航,韩子阔,吴霞,关云,方泽昕,曹鹏福. 陆相夹层型页岩油超长水平井开发技术. 石油钻采工艺. 2024(02): 220-227+237 .
![]() | |
12. |
张矿生,慕立俊,陆红军,齐银,薛小佳,拜杰. 鄂尔多斯盆地页岩油水力压裂试验场建设概述及实践认识. 钻采工艺. 2024(06): 16-27 .
![]() | |
13. |
梁成钢,李菊花,陈依伟,秦顺利,张金风,胡可. 基于朴素贝叶斯算法评估页岩油藏产能. 深圳大学学报(理工版). 2023(01): 66-73 .
![]() | |
14. |
肖杭州. CL区块登娄库组致密砂岩气藏压裂液体系适应性评价. 特种油气藏. 2023(03): 143-147 .
![]() | |
15. |
寇园园,陈军斌,聂向荣,成程. 基于离散元方法的拉链式压裂效果影响因素分析. 石油钻采工艺. 2023(02): 211-222 .
![]() | |
16. |
蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨. 石油钻探技术. 2023(04): 184-191 .
![]() | |
17. |
胡文瑞,魏漪,鲍敬伟. 鄂尔多斯盆地非常规油气开发技术与管理模式. 工程管理科技前沿. 2023(03): 1-10 .
![]() | |
18. |
赵振峰,王文雄,徐晓晨,叶亮,李鸣. 鄂尔多斯盆地海相深层页岩气压裂技术. 石油钻探技术. 2023(05): 23-32 .
![]() | |
19. |
张矿生,齐银,薛小佳,陶亮,陈文斌,武安安. 鄂尔多斯盆地页岩油水平井CO_2区域增能体积压裂技术. 石油钻探技术. 2023(05): 15-22 .
![]() | |
20. |
慕立俊,拜杰,齐银,薛小佳. 庆城夹层型页岩油地质工程一体化压裂技术. 石油钻探技术. 2023(05): 33-41 .
![]() | |
21. |
邸士莹,程时清,白文鹏,尚儒源,潘有军,史文洋. 裂缝性致密油藏注水吞吐转不稳定水驱开发模拟. 石油钻探技术. 2022(01): 89-96 .
![]() | |
22. |
张矿生,唐梅荣,陶亮,杜现飞. 庆城油田页岩油水平井压增渗一体化体积压裂技术. 石油钻探技术. 2022(02): 9-15 .
![]() | |
23. |
陈志明,赵鹏飞,曹耐,廖新维,王佳楠,刘辉. 页岩油藏压裂水平井压–闷–采参数优化研究. 石油钻探技术. 2022(02): 30-37 .
![]() | |
24. |
魏辽. 石墨烯增强铝基可溶球座研制与性能评价. 石油钻探技术. 2022(02): 113-117 .
![]() | |
25. |
刘红磊,徐胜强,朱碧蔚,周林波,黄亚杰,李保林. 盐间页岩油体积压裂技术研究与实践. 特种油气藏. 2022(02): 149-156 .
![]() | |
26. |
苗娟,何旭晟,王栋,陈泓沅,肖振华. 水平井精细分段深度酸化压裂技术研究与应用. 特种油气藏. 2022(02): 141-148 .
![]() | |
27. |
蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势. 石油钻探技术. 2022(03): 1-9 .
![]() | |
28. |
达引朋,李建辉,王飞,黄婷,薛小佳,余金柱. 长庆油田特低渗透油藏中高含水井调堵压裂技术. 石油钻探技术. 2022(03): 74-79 .
![]() | |
29. |
石道涵,张矿生,唐梅荣,陶亮,杜现飞. 长庆油田页岩油水平井体积压裂技术发展与应用. 石油科技论坛. 2022(03): 10-17 .
![]() | |
30. |
赵东睿,李宗强,尚教辉,靳筱宣. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术分析. 化学工程与装备. 2022(06): 118-119+136 .
![]() | |
31. |
王成俊,张磊,展转盈,倪军,高怡文,王维波. 基于裂缝介质转变为多孔颗粒介质的调剖方法与矿场应用. 断块油气田. 2022(05): 709-713 .
![]() | |
32. |
徐栋,王玉斌,白坤森,朱卫平,刘川庆,李兵,何朋勃. 煤系非常规天然气一体化压裂液体系研究与应用. 煤田地质与勘探. 2022(10): 35-43 .
![]() | |
33. |
凡玉梅. 未开发油气储量不确定性潜力评价方法. 石油实验地质. 2022(06): 1100-1104 .
![]() | |
34. |
张矿生,唐梅荣,杜现飞,陶亮. 鄂尔多斯盆地页岩油水平井体积压裂改造策略思考. 天然气地球科学. 2021(12): 1859-1866 .
![]() |