WANG Zhizhan. Thoughts for new progress and development directions of Sinopec’s surface logging technology [J]. Petroleum Drilling Techniques,2023, 51(4):124-133. DOI: 10.11911/syztjs.2023027
Citation: WANG Zhizhan. Thoughts for new progress and development directions of Sinopec’s surface logging technology [J]. Petroleum Drilling Techniques,2023, 51(4):124-133. DOI: 10.11911/syztjs.2023027

Thoughts for New Progress and Development Directions of Sinopec’s Surface Logging Technology

More Information
  • Received Date: December 19, 2022
  • Revised Date: February 01, 2023
  • Available Online: February 13, 2023
  • Surface logging is an oil and gas exploration technology and petroleum engineering technology, whose progress is relatively slow despite its self-evident significance. In particular, the development directions for surface logging and how to develop it are plaguing the science and technology management personnel and technology researchers. Hence, an analysis of the progress of online surface drilling-fluid logging was made in terms of oil content and performance for the surface logging technology developed by Sinopec during the 13th Five-Year Plan period. The progress of surface logging with rock samples was investigated from the aspects of online detection of elements, three-dimensional nuclear magnetic resonance (NMR), confocal laser, and acoustic logging of cuttings.The advances made in logging evaluation methods were analyzed from the perspectives of the identification and assessment of oil content in the mixed sources of drilling fluids, identification and evaluation of oil and gas data on shale in different occurrence states, calculation and application of multiple formation parameters based on elements, and carbon isotopes of gas in different occurrence states. On this basis, the requirements of "deep, high, many, non, low, thin, micro, new" posed by complex geological and engineering conditions for the timeliness, accuracy, comprehensiveness, and economy of surface logging were discussed. Finally, it was proposed that the basic research on surface logging should be deepened in terms of spectrum decomposition and decoupling, data recovery, multiple fusion, general models, etc. Breakthroughs should be made in acquisition modes from the aspects of standardization, automation, online, integration and intelligence, and interpretation and evaluation methods should be innovated by the potential tapping of a single technology, the fusion of multiple technologies, the introduction of artificial intelligence, and the support of emerging fields. It is believed that the proposed research directions are of guiding significance for boosting Sinopec’s surface logging technology and high quality development of the surface logging industry.

  • [1]
    王志战. 一体化、智能化时代的录井技术发展方向探讨[J]. 录井工程,2020,31(1):1–6. doi: 10.3969/j.issn.1672-9803.2020.01.001

    WANG Zhizhan. Discussion on the development direction of mud logging technology in the era of integration and intellectuali-zation[J]. Mud Logging Engineering, 2020, 31(1): 1–6. doi: 10.3969/j.issn.1672-9803.2020.01.001
    [2]
    王志战. 录井技术与方法的创新机制[J]. 录井工程,2017,28(3):1–5. doi: 10.3969/j.issn.1672-9803.2017.03.001

    WANG Zhizhan. Innovation mechanism of mud logging technology and method[J]. Mud Logging Engineering, 2017, 28(3): 1–5. doi: 10.3969/j.issn.1672-9803.2017.03.001
    [3]
    王志战. 枯竭砂岩气藏型储气库录井关键技术研究:以文23储气库为例[J]. 石油钻探技术,2019,47(3):156–162. doi: 10.11911/syztjs.2019059

    WANG Zhizhan. Key mud logging technologies for depleted sandstone gas storage: case study of the Wen 23 gas storage[J]. Petroleum Drilling Techniques, 2019, 47(3): 156–162. doi: 10.11911/syztjs.2019059
    [4]
    WANG Zhizhan, QIN Liming, LU Huangsheng, et al. Determining the fluorescent components in drilling fluid by using NMR method[J]. Chinese Journal of Geochemistry, 2015, 34(3): 410–415. doi: 10.1007/s11631-015-0049-3
    [5]
    王志战,秦黎明,杜焕福,等. 钻井液粉末状荧光添加剂的核磁共振特性[J]. 波谱学杂志,2014,31(3):341–348. doi: 10.3969/j.issn.1000-4556.2014.03.005

    WANG Zhizhan, QIN Liming, DU Huanfu, et al. Effects of powdered fluorescent additives on NMR characteristics of drilling fluids[J]. Chinese Journal of Magnetic Resonance, 2014, 31(3): 341–348. doi: 10.3969/j.issn.1000-4556.2014.03.005
    [6]
    王志战,秦黎明,盖姗姗,等. 利用NMR技术判识混油钻井液条件下钻遇的油层[J]. 波谱学杂志,2014,31(4):579–586. doi: 10.11938/cjmr20140412

    WANG Zhizhan, QIN Liming, GAI Shanshan, et al. The effects of oil-mixed drilling fluid on oil layer identification studied by NMR spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2014, 31(4): 579–586. doi: 10.11938/cjmr20140412
    [7]
    王志战,魏杨旭,秦黎明,等. 油基钻井液条件下油层的NMR判识方法[J]. 波谱学杂志,2015,32(3):481–488. doi: 10.11938/cjmr20150309

    WANG Zhizhan, WEI Yangxu, QIN Liming, et al. Oil layer identification by NMR with the use of oil-based drilling fluid[J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 481–488. doi: 10.11938/cjmr20150309
    [8]
    LI Sanguo, XIAO Lizhi, LI Xin, et al. A novel NMR instrument for real time drilling fluid analysis[J]. Microporous and Mesoporous Materials, 2018, 269: 138–141. doi: 10.1016/j.micromeso.2017.08.038
    [9]
    王志战,杜焕福. 离子色谱技术在钻井现场的应用研究[J]. 录井技术,2003,14(3):27–29.

    WANG Zhizhan, DU Huanfu. Wellsite application of ionic chromatographic technique[J]. Mud Logging Techniques, 2003, 14(3): 27–29.
    [10]
    梁海波,宋洋,于志刚,等. 钻井液流变性实时测量方法及系统研究[J]. 石油机械,2022,50(1):10–18. doi: 10.16082/j.cnki.issn.1001-4578.2022.01.002

    LIANG Haibo, SONG Yang, YU Zhigang, et al. Real-time measurement method and systematic study on drilling fluid rheology[J]. China Petroleum Machinery, 2022, 50(1): 10–18. doi: 10.16082/j.cnki.issn.1001-4578.2022.01.002
    [11]
    张志财,刘保双,王忠杰,等. 钻井液性能在线监测系统的研制与现场应用[J]. 钻井液与完井液,2020,37(5):597–601.

    ZHANG Zhicai, LIU Baoshuang, WANG Zhongjie, et al. Development and field application of an online drilling fluid property monitoring system[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 597–601.
    [12]
    王鹏,刘伟,张果. 钻井液性能自动监测装置的现状及改进建议[J]. 钻采工艺,2022,45(3):42–47. doi: 10.3969/J.ISSN.1006-768X.2022.03.08

    WANG Peng, LIU Wei, ZHANG Guo. Status quo and improvement suggestions of automatic monitoring equipment for drilling fluid performance[J]. Drilling & Production Technology, 2022, 45(3): 42–47. doi: 10.3969/J.ISSN.1006-768X.2022.03.08
    [13]
    王晓丹. 一种硫化氢侵入钻井液的在线连续监测方法[J]. 录井工程,2014,25(1):37–39.

    WANG Xiaodan. An on-line continuous monitoring method for hydrogen sulfide in drilling fluid[J]. Mud Logging Engineering, 2014, 25(1): 37–39.
    [14]
    陈现军,郭书生,张志财. 钻井液性能在线监测技术在南海钻井施工中的应用[J]. 录井工程,2022,33(2):73–77. doi: 10.3969/j.issn.1672-9803.2022.02.013

    CHEN Xianjun, GUO Shusheng, ZHANG Zhicai. Application of the on-line monitoring of drilling fluid performance in Nanhai Sea drilling operations[J]. Mud Logging Engineering, 2022, 33(2): 73–77. doi: 10.3969/j.issn.1672-9803.2022.02.013
    [15]
    王志战. 利用核磁共振和离子色谱参数开展随钻压力检测的探讨[J]. 录井工程,2007,18(1):1–4. doi: 10.3969/j.issn.1672-9803.2007.01.001

    WANG Zhizhan. The discussion on carrying out pressure detection while drilling by using the parameters of the nuclear magnetic resonance and ion chromatography[J]. Mud Logging Engineering, 2007, 18(1): 1–4. doi: 10.3969/j.issn.1672-9803.2007.01.001
    [16]
    程豪华,谢元军,余寒雷,等. 多功能岩心元素扫描仪的研发与应用[J]. 录井工程,2022,33(3):84–88. doi: 10.3969/j.issn.1672-9803.2022.03.014

    CHENG Haohua, XIE Yuanjun, YU Hanlei, et al. Development and application of multifunction core element scanner[J]. Mud Logging Engineering, 2022, 33(3): 84–88. doi: 10.3969/j.issn.1672-9803.2022.03.014
    [17]
    杨志强,李光泉,佘明军. 基于激光诱导击穿光谱的岩屑岩性在线识别试验研究[J]. 石油钻探技术,2019,47(4):122–126. doi: 10.11911/syztjs.2019091

    YANG Zhiqiang, LI Guangquan, SHE Mingjun. Test research of online identification of cuttings lithology by LIBS technology[J]. Petroleum Drilling Techniques, 2019, 47(4): 122–126. doi: 10.11911/syztjs.2019091
    [18]
    杨志强,佘明军,李油建. 激光在线识别岩性技术的影响因素分析与处理[J]. 录井工程,2019,30(2):74–78. doi: 10.3969/j.issn.1672-9803.2019.02.014

    YANG Zhiqiang, SHE Mingjun, LI Youjian. Analysis and treatment of influencing factors of laser online identification of lithology[J]. Mud Logging Engineering, 2019, 30(2): 74–78. doi: 10.3969/j.issn.1672-9803.2019.02.014
    [19]
    WANG Zhizhan, QIN Liming, LU Huangsheng. Two dimentional NMR analysis and evaluation of oil or gas shale[R]. SPE 176184, 2015.
    [20]
    王志战. 页岩油储层DT2核磁共振解释方法[J]. 天然气地球科学,2020,31(8):1178–1184.

    WANG Zhizhan. Discuss on DT2 NMR interpretation of oil shale[J]. Natural Gas Geoscience, 2020, 31(8): 1178–1184.
    [21]
    LI Jinbu, JIANG Chunqing, WANG Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: a new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311. doi: 10.1016/j.marpetgeo.2020.104311
    [22]
    孙先达,索丽敏,张民志,等. 激光共聚焦扫描显微检测技术在大庆探区储层分析研究中的新进展[J]. 岩石学报,2005,21(5):1479–1488. doi: 10.3321/j.issn:1000-0569.2005.05.020

    SUN Xianda, SUO Limin, ZHANG Minzhi, et al. New progress of reservoir research by the technology of laser confocal scanning microscope analysis in the Daqing exploration area[J]. Acta Petrologica Sinica, 2005, 21(5): 1479–1488. doi: 10.3321/j.issn:1000-0569.2005.05.020
    [23]
    王金星. 共聚焦显微扫描系统的新方法在地质科学研究中的应用[J]. 地质论评,2004,50(2):215–217. doi: 10.3321/j.issn:0371-5736.2004.02.015

    WANG Jinxing. Applications of a new method of confocal microsystem to geological studies[J]. Geological Review, 2004, 50(2): 215–217. doi: 10.3321/j.issn:0371-5736.2004.02.015
    [24]
    应凤祥,杨式升,张敏,等. 激光扫描共聚焦显微镜研究储层孔隙结构[J]. 沉积学报,2002,20(1):75–79. doi: 10.3969/j.issn.1000-0550.2002.01.013

    YING Fengxiang, YANG Shisheng, ZHANG Min, et al. Application of laser scanning confocal microscope to the measurement of pore texture in reservoirs[J]. Acta Sedimentologica Sinica, 2002, 20(1): 75–79. doi: 10.3969/j.issn.1000-0550.2002.01.013
    [25]
    李油建,王䶮舒,孟韶彬,等. 激光扫描共聚焦技术在录井储集层评价中的应用及展望[J]. 录井工程,2017,28(2):4–8. doi: 10.3969/j.issn.1672-9803.2017.02.002

    LI Youjian, WANG Yanshu, MENG Shaobin, et al. Application and prospect of laser scanning confocal technique in reservoir evaluation of mud logging[J]. Mud Logging Engineering, 2017, 28(2): 4–8. doi: 10.3969/j.issn.1672-9803.2017.02.002
    [26]
    NES O M, HORSRUD P, SONSTEBO E F, et al. Rig-site and laboratory use of CWT acoustic velocity measurements on cut-tings[R]. SPE 36854, 1996.
    [27]
    葛洪魁,宋丽莉,林英松,等. 岩屑波速及微硬度测试的初步研究[J]. 石油钻探技术,2002,30(2):1–3. doi: 10.3969/j.issn.1001-0890.2002.02.001

    GE Hongkui, SONG Lili, LIN Yingsong, et al. Primary study on testing of cuttings’ acoustic velocity and micro hardness[J]. Petroleum Drilling Techniques, 2002, 30(2): 1–3. doi: 10.3969/j.issn.1001-0890.2002.02.001
    [28]
    索彧,葛洪魁,王小琼,等. 页岩岩屑高精度波速测量的仪器与方法[J]. 岩土力学,2018,39(1):385–392. doi: 10.16285/j.rsm.2016.0038

    SUO Yu, GE Hongkui, WANG Xiaoqiong, et al. Instruments and methods with high-precision for wave velocity measurement on shale debris[J]. Rock and Soil Mechanics, 2018, 39(1): 385–392. doi: 10.16285/j.rsm.2016.0038
    [29]
    路保平,袁多,吴超,等. 井震信息融合指导钻井技术[J]. 石油勘探与开发,2020,47(6):1227–1234. doi: 10.11698/PED.2020.06.16

    LU Baoping, YUAN Duo, WU Chao, et al. A drilling technology guided by well-seismic information integration[J]. Petroleum Exploration and Development, 2020, 47(6): 1227–1234. doi: 10.11698/PED.2020.06.16
    [30]
    王志战,朱祖扬,李丰波,等. 便携式岩屑声波录井系统研制与测试[J]. 石油钻探技术,2020,48(6):109–115. doi: 10.11911/syztjs.2020141

    WANG Zhizhan, ZHU Zuyang, LI Fengbo, et al. Development and testing of a portable acoustic logging system on cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109–115. doi: 10.11911/syztjs.2020141
    [31]
    MA Xinhua, WANG Hongyan, ZHOU Shangwen, et al. Insights into NMR response characteristics of shales and its application in shale gas reservoir evaluation[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103674. doi: 10.1016/j.jngse.2020.103674
    [32]
    FLEURY M, ROMERO-SARMIENTO M. Characterization of shales using T1–T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137: 55–62. doi: 10.1016/j.petrol.2015.11.006
    [33]
    张鹏飞. 基于核磁共振技术的页岩油储集、赋存与可流动性研究[D]. 青岛: 中国石油大学(华东), 2019.

    ZHANG Pengfei. Research on shale oil reservoir, occurrence and movability using nuclear magnetic resonance (NMR)[D]. Qingdao: China University of Petroleum(East China), 2019.
    [34]
    唐诚,王志战,陈明,等. 基于X射线荧光元素录井的深层页岩气精准地质导向技术[J]. 石油钻探技术,2019,47(6):103–110. doi: 10.11911/syztjs.2019135

    TANG Cheng, WANG Zhizhan, CHEN Ming, et al. Accurate geosteering technology for deep shale gas based on XRF element mud logging[J]. Petroleum Drilling Techniques, 2019, 47(6): 103–110. doi: 10.11911/syztjs.2019135
    [35]
    王淑芳,邹才能,董大忠,等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版),2014,50(3):476–486. doi: 10.13209/j.0479-8023.2014.079

    WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476–486. doi: 10.13209/j.0479-8023.2014.079
    [36]
    顾炎午,唐诚,王崇敬,等. XRF元素录井用于随钻开展页岩评价参数计算的方法[J]. 录井工程,2018,29(1):47–52. doi: 10.3969/j.issn.1672-9803.2018.01.011

    GU Yanwu, TANG Cheng, WANG Chongjing, et al. XRF element logging on calculating shale evaluation parameters while drilling[J]. Mud Logging Engineering, 2018, 29(1): 47–52. doi: 10.3969/j.issn.1672-9803.2018.01.011
    [37]
    李文镖,卢双舫,李俊乾,等. 页岩气/煤层气运移过程中的同位素分馏研究进展[J]. 石油勘探与开发,2022,49(5):929–942. doi: 10.11698/PED.20220225

    LI Wenbiao, LU Shuangfang, LI Junqian, et al. Research progress on isotopic fractionation in the process of shale gas/coalbed methane migration[J]. Petroleum Exploration and Development, 2022, 49(5): 929–942. doi: 10.11698/PED.20220225
    [38]
    ALMUBARAK Z, ALROWAIE M, LU Feng, et al. Gas chemical and carbon isotope composition as a diagnostic tool for energy[R]. SPE 209992, 2022.
    [39]
    CAO Gaohui, ZHANG Huanxu, JIANG Wenbin, et al. A new gas-content-evaluation method for organic-rich shale using the fractionation of carbon isotopes of methane[J]. SPE Journal, 2019, 24(6): 2574–2589. doi: 10.2118/197043-PA
    [40]
    NORVILLE G, MUEHLENBACHS K. Insights from stable isotope geochemistry surveillance in the unconventional Horn River Basin play[R]. URTEC 2901086, 2018.
    [41]
    BECK G F, DOW W G. Determining reservoir connectivity in challenging wellbore environments using formation pressure while drilling and mud gas isotope data[R]. SPWLA-2008-UUU, 2008.
    [42]
    DASHTI J, AL-AWADI M, MUSHNURI S, et al. Modified thermal maturity models for Kuwait Basin through mud gas isotope logging while drilling; benefits of analyzing d13C2 and d13C3 at well-site[R]. SPE 192988, 2018.
    [43]
    NAIR A, KURAWLE I, KAUL M, et al. Mud gas isotope logging using mass spectrometry[R]. SPE 121004, 2009.
    [44]
    牛强,瞿煜扬,慈兴华,等. 碳同位素录井技术发展现状及展望[J]. 录井工程,2019,30(3):8–15. doi: 10.3969/j.issn.1672-9803.2019.03.002

    NIU Qiang, QU Yuyang, CI Xinghua, et al. Development status and prospect of carbon isotope logging technology[J]. Mud Logging Engineering, 2019, 30(3): 8–15. doi: 10.3969/j.issn.1672-9803.2019.03.002
    [45]
    耿恒,陈沛,陈鸣. 实时甲烷碳同位素录井在南海西部YC 1-1-1井的应用[J]. 录井工程,2016,27(4):45–48. doi: 10.3969/j.issn.1672-9803.2016.04.010

    GENG Heng, CHEN Pei, CHEN Ming. Application of real-time methane carbon isotope logging in YC1-1-1 well in the west of the South China Sea[J]. Mud Logging Engineering, 2016, 27(4): 45–48. doi: 10.3969/j.issn.1672-9803.2016.04.010
    [46]
    袁胜斌,黄小刚,汪芯,等. 实时同位素录井技术应用[J]. 录井工程,2017,28(2):9–12. doi: 10.3969/j.issn.1672-9803.2017.02.003

    YUAN Shengbin, HUANG Xiaogang, WANG Xin, et al. Application of real-time isotope logging technology[J]. Mud Logging Engineering, 2017, 28(2): 9–12. doi: 10.3969/j.issn.1672-9803.2017.02.003
    [47]
    张家政,朱地,慈兴华,等. 湖北宜昌地区鄂阳页2井牛蹄塘组和陡山沱组页岩气随钻碳同位素特征及勘探意义[J]. 石油学报,2019,40(11):1346–1357. doi: 10.7623/syxb201911005

    ZHANG Jiazheng, ZHU Di, CI Xinghua, et al. Characteristics of carbon isotope while drilling and exploration significance of shale gas in Niutitang and Doushantuo formations in Well Eyangye-2, Yichang, Hubei, China[J]. Acta Petrolei Sinica, 2019, 40(11): 1346–1357. doi: 10.7623/syxb201911005
    [48]
    牛强,张焕旭,朱地,等. 川东南五峰组—龙马溪组页岩气录井碳同位素特征及其地质意义[J]. 天然气地球科学,2020,31(9):1294–1305.

    NIU Qiang, ZHANG Huanxu, ZHU Di, et al. Mud gas isotopic logging of Wufeng-Longmaxi shale in southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(9): 1294–1305.
    [49]
    杨光. 碳同位素录井技术在川南威远地区页岩气井甜点评价中的应用[J]. 录井工程,2022,33(3):14–19. doi: 10.3969/j.issn.1672-9803.2022.03.003

    YANG Guang. Application of carbon isotope mud logging technology in sweet spot evaluation of shale gas wells in Weiyuan Area, southern Sichuan[J]. Mud Logging Engineering, 2022, 33(3): 14–19. doi: 10.3969/j.issn.1672-9803.2022.03.003
    [50]
    ESTARABADI J, SHOEIBI A, FERRONI G, et al. The application of well site isotopic analysis for reservoir evaluation[R]. SPWLA-2016-VVVV, 2016.
  • Cited by

    Periodical cited type(10)

    1. 易浩,郭挺,孙连忠. 顺北油气田二叠系火成岩钻井技术研究与应用. 钻探工程. 2024(01): 131-138 .
    2. 徐磊,侯彬彬,董丽娜,高宇行. 靖边区域钻井提速技术. 中国石油和化工标准与质量. 2024(04): 177-179 .
    3. 王延文,叶海超. 随钻测控技术现状及发展趋势. 石油钻探技术. 2024(01): 122-129 . 本站查看
    4. 任海涛,王新东,张昕,杨迎新,苏涛,王柏辉,周广静. PDC钻头数字化选型技术及软件开发. 石油机械. 2024(05): 9-16 .
    5. 胡文革. 顺北油气田“深地工程”关键工程技术进展及发展方向. 石油钻探技术. 2024(02): 58-65 . 本站查看
    6. 刘湘华,于洋,刘景涛. 顺北油气田特深井钻井关键技术现状与发展建议. 石油钻探技术. 2024(02): 72-77 . 本站查看
    7. 刘永旺,李坤,管志川,毕琛超,霍韵如,于濮玮. 降低井底岩石抗钻能力的钻速提高方法研究及钻头设计. 石油钻探技术. 2024(03): 11-20 . 本站查看
    8. 李一岚. 顺北超深超高温油气藏钻完井提速关键技术. 石油钻探技术. 2024(03): 21-27 . 本站查看
    9. 苏前荣,刘伟,张立军,刘松,刘长江,高蓬,纪照生. 顺北奥陶系漏失层钻井液关键技术研究. 内蒙古石油化工. 2024(12): 86-90 .
    10. 李兵. 海拉尔地区钻井提速设计优化. 山东石油化工学院学报. 2023(03): 51-55 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return