ZHAO Zhenfeng, WANG Wenxiong, XU Xiaochen, et al. Hydraulic fracturing technology for deep marine shale gas in Ordos Basin [J]. Petroleum Drilling Techniques,2023, 51(5):23-32. DOI: 10.11911/syztjs.2023081
Citation: ZHAO Zhenfeng, WANG Wenxiong, XU Xiaochen, et al. Hydraulic fracturing technology for deep marine shale gas in Ordos Basin [J]. Petroleum Drilling Techniques,2023, 51(5):23-32. DOI: 10.11911/syztjs.2023081

Hydraulic Fracturing Technology for Deep Marine Shale Gas in Ordos Basin

More Information
  • Received Date: May 31, 2023
  • Revised Date: August 27, 2023
  • Available Online: August 31, 2023
  • The marine shale gas reservoir of Wulalike Formation in the western Ordos Basin covers a favorable gas enrichment area of approximately 9,000 km2. However, the reservoir is deep buried, has a low formation pressure coefficient, and exhibits low indicators in terms of total organic carbon content (TOC) and gas-bearing properties, making hydraulic fracturing for production more challenging. This work conducted a comparison and analysis of geological characteristics and fracturing difficulties of Wulalike shale gas, and the problem of fracture propagation and sand-adding of deep marine shale gas has been solved by optimizing more stages and fewer clusters fractures and upgrading the wellhead pressure level to 140 MPa. In response to the requirement of continuous drainage after fracturing with large liquid volume under low formation pressure conditions, by liquid nitrogen injection or pre-loading liquid CO2 to enhance formation energy, the post-fracturing pressure-controlled drainage production system was optimized through laboratory simulation and field data fitting. On site tests of high-pressure hybrid fracturing of vertical wells and multi-cluster energized volume fracturing technology of horizontal wells were conducted, the key parameters such as operation liquid capacity, sand amount, and discharge rate of energized fracturing of horizontal wells have reached the level of shale gas in Sichuan. The length and width of fracture zone is 579 m and 266 m according to the microseismic monitoring results, respectively. The absolute open flow has exceeded 10×104 m3 for vertical wells and 20×104 m3 for horizontal wells, suggesting that the production has been improved with large scale volume stimulation. The hydraulic fracturing technology for deep marine shale in Ordos Basin has provided technical support for the exploration and development of shale in Ordos Basin.

  • [1]
    门晓溪,韩志辉,王磊. 页岩气资源勘探开发历史及现状[J]. 新疆石油地质,2018,39(3):372–376.

    MEN Xiaoxi, HAN Zhihui, WANG Lei. History and current situation of shale gas exploration and development[J]. Xinjiang Petroleum Geology, 2018, 39(3): 372–376.
    [2]
    邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发,2016,43(2):166–178.

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166–178.
    [3]
    李宪文,李喆,肖元相,等. 苏里格致密气水平井完井压裂技术对比研究[J]. 石油钻采工艺,2021,43(1):48–53.

    LI Xianwen, LI Zhe, XIAO Yuanxiang, et al. Comparative study on the completion and fracturing technologies used for tight-gas horizontal wells in Sulige Gas Field[J]. Oil Drilling & Production Technology, 2021, 43(1): 48–53.
    [4]
    赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075

    ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075
    [5]
    慕立俊,赵振峰,李宪文,等. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质,2019,40(3):626–635.

    MU Lijun, ZHAO Zhenfeng, LI Xianwen, et al. Fracturing technology of stimulated reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 626–635.
    [6]
    张矿生,唐梅荣,杜现飞,等. 鄂尔多斯盆地页岩油水平井体积压裂改造策略思考[J]. 天然气地球科学,2021,32(12):1859–1866.

    ZHANG Kuangsheng, TANG Meirong, DU Xianfei, et al. Considerations on the strategy of volume fracturing for shale oil horizontal wells in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1859–1866.
    [7]
    吴奇,胥云,刘玉章,等. 美国页岩气体积改造技术现状及对我国的启示[J]. 石油钻采工艺,2011,33(2):1–7. doi: 10.3969/j.issn.1000-7393.2011.02.001

    WU Qi, XU Yun, LIU Yuzhang, et al. The current situation of stimulated reservoir volume for shale in U. S. and its inspiration to China[J]. Oil Drilling & Production Technology, 2011, 33(2): 1–7. doi: 10.3969/j.issn.1000-7393.2011.02.001
    [8]
    张矿生,王文雄,徐晨,等. 体积压裂水平井增产潜力及产能影响因素分析[J]. 科学技术与工程,2013,13(35):10475–10480.

    ZHANG Kuangsheng, WANG Wenxiong, XU Chen, et al. Analysis on stimulation potential and productivity influencing factors of network fractured horizontal well[J]. Science Technology and Engineering, 2013, 13(35): 10475–10480.
    [9]
    蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023,51(4):184–191. doi: 10.11911/syztjs.2023023

    JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reser-voirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184–191. doi: 10.11911/syztjs.2023023
    [10]
    赵振峰,刘汉斌,杜现飞,等. 页岩油藏多段水平井压后关井阶段压力扩散数学模型研究[J]. 地质与勘探,2022,58(3):686–695.

    ZHAO Zhenfeng, LIU Hanbin, DU Xianfei, et al. Pressure diffusion at the shut-in stage of multi-section horizontal wells in shale oil reservoirs[J]. Geology and Exploration, 2022, 58(3): 686–695.
    [11]
    赵振峰,唐梅荣,杜现飞,等. 压裂水平井非稳态产能分析与影响因素研究:以鄂尔多斯长庆致密油为例[J]. 深圳大学学报(理工版),2017,34(6):647–654.

    ZHAO Zhenfeng, TANG Meirong, DU Xianfei, et al. Factors affecting rate transient of fractured horizontal well in tight oil reservoir: Ordos Basin Changqing tight oil[J]. Journal of Shenzhen Univer-sity(Science & Engineering), 2017, 34(6): 647–654.
    [12]
    赵振峰,白晓虎,陈强,等. 基于模糊集合理论的体积压裂水平井产量预测方法[J]. 石油钻采工艺,2019,41(4):521–528.

    ZHAO Zhenfeng, BAI Xiaohu, CHEN Qiang, et al. Production prediction method of volume fracturing horizontal wells based on fuzzy set theory[J]. Oil Drilling & Production Technology, 2019, 41(4): 521–528.
    [13]
    慕立俊,吴顺林,徐创朝,等. 基于缝网扩展模拟的致密储层体积压裂水平井产能贡献分析[J]. 特种油气藏,2021,28(2):126–132. doi: 10.3969/j.issn.1006-6535.2021.02.019

    MU Lijun, WU Shunlin, XU Chuangchao, et al. Analysis on contribution to productivity of SRV-fractured horizontal wells in tight reservoirs based on simulation of fracture network propagation[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 126–132. doi: 10.3969/j.issn.1006-6535.2021.02.019
    [14]
    张矿生,唐梅荣,陶亮,等. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术,2022,50(2):9–15.

    ZHANG Kuangsheng, TANG Meirong, TAO Liang, et al. Horizontal well volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition for shale oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9–15.
    [15]
    刘汉斌,唐梅荣,吕宝强,等. 页岩油压裂用纳米变黏滑溜水的合成及其性能评价[J]. 科学技术与工程,2023,23(8):3244–3251.

    LIU Hanbin, TANG Meirong, LYU Baoqiang, et al. Synthesis and performance evaluation of nano variable-viscosity slickwater for shale oil fracturing[J]. Science Technology and Engineering, 2023, 23(8): 3244–3251.
    [16]
    蒋廷学,卞晓冰,孙川翔,等. 深层页岩气地质工程一体化体积压裂关键技术及应用[J]. 地球科学,2023,48(1):1–13.

    JIANG Tingxue, BIAN Xiaobing, SUN Chuanxiang, et al. Key technologies in geology-engineering integration volumetric fracturing for deep shale gas wells[J]. Earth Science, 2023, 48(1): 1–13.
    [17]
    万延周. 鄂尔多斯西缘奥陶系烃源岩及储盖层特征研究[D]. 西安: 西北大学, 2009.

    WAN Yanzhou. A study on the characteristics of Ordovician source rocks and reservoirs and cap rocks on the west margin of the Ordos Basin[D]. Xi’an: Northwest University, 2009.
    [18]
    蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体积压裂技术[J]. 天然气工业,2017,37(1):90–96.

    JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1): 90–96.
    [19]
    问晓勇,赵倩云,叶亮,等. 深层页岩气储层耐温抗盐型滑溜水压裂液体系研究[J]. 西安石油大学学报(自然科学版),2023,38(4):104–111.

    WEN Xiaoyong, ZHAO Qianyun, YE Liang, et al. Study on high-temperature resistance salt-resistance slickwater fracturing fluid system for deep shale gas reservoirs[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2023, 38(4): 104–111.
    [20]
    付锁堂,王文雄,李宪文,等. 鄂尔多斯盆地低压海相页岩气储层体积压裂及排液技术[J]. 天然气工业,2021,41(3):72–79.

    FU Suotang, WANG Wenxiong, LI Xianwen, et al. Volume fracturing and drainage technologies for low-pressure marine shale gas reservoirs in the Ordos Basin[J]. Natural Gas Industry, 2021, 41(3): 72–79.
  • Cited by

    Periodical cited type(12)

    1. 王遵察,程万,艾昆,胡清海,石育钊. 井工厂井网部署与压裂模式发展现状与展望. 钻探工程. 2024(03): 9-19 .
    2. 王学成,乔东宇,王磊,迟启福,徐小喧,郭旭. 连续油管控压封堵作业在康探1井中的应用. 石油和化工设备. 2023(03): 92-95 .
    3. 何雨,孟鐾桥,郑友志,吴柄燕,赵军,李斌. 渝西区块页岩气钻井防漏堵漏技术研究. 石油工业技术监督. 2023(07): 58-62 .
    4. 孔祥伟,卾玄吉,齐天俊,陈青,任勇,王素兵,李亭,刘宇. 页岩气井复合暂堵泵压数学模型及影响因素. 特种油气藏. 2023(04): 156-162 .
    5. 何雷,何林虎,苏文刚,张硕,蒋和平. 油基钻井液固结堵漏技术研究与应用. 石化技术. 2022(04): 64-65 .
    6. 何雷,张硕,何天桦,徐兆喜,王光北. 吉木萨尔页岩油油基钻井液防漏堵漏技术研究与应用. 石化技术. 2022(05): 63-65 .
    7. 李文哲,于兴川,赖燕,刘厚彬,文雯,张震,吴申尭. 深层脆性页岩井钻井液漏失机理及主控因素. 特种油气藏. 2022(03): 162-169 .
    8. 李得新,尹亮先,李培. 纵向裂隙发育地层井漏处理技术探讨. 四川地质学报. 2022(S1): 147-150 .
    9. 孙利军,孙铭博,盛哲. 基于MATLAB的颜色识别系统在油田联合站中的应用. 油气田地面工程. 2022(07): 104-108 .
    10. 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议. 石油钻探技术. 2022(05): 1-8 . 本站查看
    11. 程欢,赵江源,董家滨,赵国明. 涩北气田钻井漏转喷风险预防措施. 石油工业技术监督. 2021(10): 59-62 .
    12. 孙威威. 海坨区块高效堵漏体系的优化与应用. 钻探工程. 2021(12): 72-78 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (206) PDF downloads (105) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return