XIE Guanbao. Establishment of Logging Evaluation Criteria for the Cementing Quality of Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119-126. DOI: 10.11911/syztjs.2022015
Citation: XIE Guanbao. Establishment of Logging Evaluation Criteria for the Cementing Quality of Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119-126. DOI: 10.11911/syztjs.2022015

Establishment of Logging Evaluation Criteria for the Cementing Quality of Low-Density Cement Slurries

More Information
  • Received Date: April 01, 2021
  • Revised Date: December 31, 2021
  • Available Online: February 17, 2022
  • To provide a theoretical basis and criteria for the logging evaluation of the cementing quality of low-density cement slurries, the impacts of cement slurry density, cement sheath thickness, and cementing quality at the first interface on the conventional logging of cementing quality were analyzed according to the results of tests on acoustic characteristics at high temperatures and numerical simulation. The following understandings were obtained by the analysis: Affected by the outer diameter and thickness of casing, the difference in the relative amplitude of casing wave became increasingly obvious as the cement slurry density decreases. When there is a micro-annulus between the casing and the cement sheath, the amplitude increased monotonically with the the increase of cement sheath thickness and tended to be gentle when the cement sheath thickness was large. The micro-annulus significantly enhanced the amplitude of casing wave, especially for low-density cement slurry cementing. However, the effect of the cement slurry density weakened markedly after the thickness of the micro-annulus was increased to 5 mm. Depending on the analysis results, a log interpretation chart was established, and logging evaluation criteria were formulated for the cementing quality of low-density cement slurries. The evaluation criteria are expected to provide useful guidance for the logging evaluation of the cementing quality of low-density cement slurries in engineering practice.
  • [1]
    田鑫,章成广,毛志强. 低密度水泥固井质量评价方法研究[J]. 石油钻探技术,2006,34(6):36–38. doi: 10.3969/j.issn.1001-0890.2006.06.012

    TIAN Xin, ZHANG Chengguang, MAO Zhiqiang. An evaluation method for cementing operations with light weight cement[J]. Petroleum Drilling Techniques, 2006, 34(6): 36–38. doi: 10.3969/j.issn.1001-0890.2006.06.012
    [2]
    步玉环,宋文宇,何英君,等. 低密度水泥浆固井质量评价方法探讨[J]. 石油钻探技术,2015,43(5):49–55.

    BU Yuhuan, SONG Wenyu, HE Yingjun, et al. Discussion of a method for evaluating cementing quality with low-density cement slurries[J]. Petroleum Drilling Techniques, 2015, 43(5): 49–55.
    [3]
    罗勇,宋文宇,步玉环,等. 低密度水泥固井质量评价方法的改进[J]. 天然气工业,2012,32(10):59–62. doi: 10.3787/j.issn.1000-0976.2012.10.014

    LUO Yong, SONG Wenyu, BU Yuhuan, et al. Improvement on the cementing quality assessment method for light weight cement sheaths[J]. Natural Gas Industry, 2012, 32(10): 59–62. doi: 10.3787/j.issn.1000-0976.2012.10.014
    [4]
    武治强,许明标,刘书杰,等. 固井水泥环胶结质量检测与评价技术研究[J]. 重庆科技学院学报(自然科学版),2017,19(4):39–41.

    WU Zhiqiang, XU Mingbiao, LIU Shujie, et al. Study on testing method and evaluation technology of cement bond quality of well cementation[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2017, 19(4): 39–41.
    [5]
    王华,陶果,尚学峰,等. 轻质水泥固井质量声波测井评述与方法研究[J]. 测井技术,2014,38(2):165–173.

    WANG Hua, TAO Guo, SHANG Xuefeng, et al. Review and study on acoustic/ultrasonic methods for low-density cement bond logging[J]. Well Logging Technology, 2014, 38(2): 165–173.
    [6]
    刁小红. 特殊情况下的固井质量评价方法探讨[J]. 石油仪器,2012,26(5):59–61,65.

    DIAO Xiaohong. Cementing quality evaluation methods in some special cases[J]. Petroleum Instruments, 2012, 26(5): 59–61,65.
    [7]
    田进,许明标,鲜若琨,等. 川渝区块页岩气井固井质量评价方法应用现状[J]. 西部探矿工程,2021,33(4):47–49. doi: 10.3969/j.issn.1004-5716.2021.04.015

    TIAN Jin, XU Mingbiao, XIAN Ruokun, et al. Application status of cementing quality evaluation methods for shale gas wells in Sichuan Chongqing Block[J]. West-China Exploration Engineering, 2021, 33(4): 47–49. doi: 10.3969/j.issn.1004-5716.2021.04.015
    [8]
    侯振永,郝晓良,马焕英,等. 超声固井质量评价方法改进及应用[J]. 测井技术,2019,43(6):657–660.

    HOU Zhenyong, HAO Xiaoliang, MA Huanying, et al. Improvement and application of the quality evaluation method for UIL cement bond[J]. Well Logging Technology, 2019, 43(6): 657–660.
    [9]
    唐军,章成广,张碧星,等. 基于声波–变密度测井的固井质量评价方法[J]. 石油勘探与开发,2016,43(3):469–475.

    TANG Jun, ZHANG Chengguang, ZHANG Bixing, et al. Cement bond quality evaluation based on acoustic variable density logging[J]. Petroleum Exploration and Development, 2016, 43(3): 469–475.
    [10]
    李维彦,王天雨,董红. IBC资料固井质量评价处理与分析[J]. 石油天然气学报,2014,36(6):79–82. doi: 10.3969/j.issn.1000-9752.2014.06.018

    LI Weiyan, WANG Tianyu, DONG Hong. Evaluating cementing quality with IBC data[J]. Journal of Oil and Gas Technology, 2014, 36(6): 79–82. doi: 10.3969/j.issn.1000-9752.2014.06.018
    [11]
    杨旭辉,余厚全,陈强,等. 泄漏Lamb波在固井质量评价中的应用[J]. 应用声学,2017,36(3):241–248. doi: 10.11684/j.issn.1000-310X.2017.03.008

    YANG Xuhui, YU Houquan, CHEN Qiang, et al. The application of leaky Lamb waves in cementing quality evaluation[J]. Journal of Applied Acoustics, 2017, 36(3): 241–248. doi: 10.11684/j.issn.1000-310X.2017.03.008
    [12]
    陈雷,杨红歧,肖京男,等. 杭锦旗区块漂珠–氮气超低密度泡沫水泥固井技术[J]. 石油钻探技术,2018,46(3):34–38.

    CHEN Lei, YANG Hongqi, XIAO Jingnan, et al. Ultra-low density hollow microspheres-nitrogen foamed cementing technology in Block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34–38.
    [13]
    惠伟,戴荣东,郝金克,等. 胜利油田固井质量评价测井技术现状及发展趋势[J]. 石油管材与仪器,2018,4(4):89–92.

    HUI Wei, DAI Rongdong, HAO Jinke, et al. Present status and development trend of cementing quality evaluation in Shengli Oilfield[J]. Petroleum Tubular Goods & Instruments, 2018, 4(4): 89–92.
    [14]
    张锦宏. 中国石化石油工程技术现状及发展建议[J]. 石油钻探技术,2019,47(3):9–17. doi: 10.11911/syztjs.2019061

    ZHANG Jinhong. Current status and outlook for the development of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2019, 47(3): 9–17. doi: 10.11911/syztjs.2019061
    [15]
    路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techni-ques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
  • Related Articles

    [1]XU Xiaokai, ZHAO Weina, ZHANG Jinyan, DONG Jingli, SUN Qingxi, WANG Lei. Recursive Algorithm for Electromagnetic Fields from Magnetic Dipole in Layered Triaxial Anisotropic Medium and Its Application[J]. Petroleum Drilling Techniques, 2024, 52(1): 130-139. DOI: 10.11911/syztjs.2023117
    [2]CHEN Dongfang, QUAN Bing, XIAO Xinqi, ZHANG Guangyu, CHEN Zhihua. Structure Design and Laboratory Testings of an Axial & Torsional Coupling Impactor[J]. Petroleum Drilling Techniques, 2024, 52(1): 78-83. DOI: 10.11911/syztjs.2023104
    [3]NIU Chengcheng, HOU Xutian, LI Yang. Triaxial Mechanical Tests and Multiple Regression Strength Analysis of Simalted Frozen Soil Sample from Mohe[J]. Petroleum Drilling Techniques, 2021, 49(3): 27-34. DOI: 10.11911/syztjs.2021049
    [4]CHEN Yuanpeng, WANG Zhiyuan, SUN Baojiang, CHEN Ye, ZHENG Kaibo. The Optimization of Rubber Sealing Materials for Key Equipment in Polar Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 54-60. DOI: 10.11911/syztjs.2019111
    [5]LI Yibo, LI Yongjie. The Development and Testing of a Rapid Measurement Device for Determining the Gas Drilling Subsurface Blasting Limits[J]. Petroleum Drilling Techniques, 2019, 47(5): 62-68. DOI: 10.11911/syztjs.2019040
    [6]LI Gao, CHEN Ze, MENG Yingfeng, CHEN Yijian, JIANG Zujun. Research on Measurement Methods of MMWD during Gas Drilling[J]. Petroleum Drilling Techniques, 2018, 46(5): 52-56. DOI: 10.11911/syztjs.2018055
    [7]HU Qiong, CHE Qiang, REN Xiaoling. Pilot Tests on Thermal-Mechanical Composite Rock-Breaking Methods[J]. Petroleum Drilling Techniques, 2016, 44(1): 29-33. DOI: 10.11911/syztjs.201601006
    [8]Ma Jinliang, Pan Juanfang, Wang Lin, Zhang Wu, Li Nan, Zhu Daoping. Development and Application of Self-Sealing Compression Packer[J]. Petroleum Drilling Techniques, 2015, 43(6): 120-124. DOI: 10.11911/syztjs.201506022
    [9]Wang Xiyong, Jiang Zujun, Lian Zhanghua. Development and Field Test of Shock Absorber in Gas Drilling Tool[J]. Petroleum Drilling Techniques, 2012, 40(4): 119-122. DOI: 10.3969/j.issn.1001-0890.2012.04.024
    [10]Sun Xiaojie, Cheng Yuanfang, Li Lingdong, Cui Qing, Li Qingping. Triaxial Compression Test on Synthetic Core Sample with Simulated Hydrate-Bearing Sediments[J]. Petroleum Drilling Techniques, 2012, 40(4): 52-57. DOI: 10.3969/j.issn.1001-0890.2012.04.011
  • Cited by

    Periodical cited type(5)

    1. 李新勇,李骁,赵兵,王琨,苟波. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术. 石油钻探技术. 2022(02): 92-98 . 本站查看
    2. 邱春阳,张翔宇,赵红香,王雪晨,张海青,陈二丁. 顺北区块深层井壁稳定钻井液技术. 天然气勘探与开发. 2021(02): 81-86 .
    3. 汤明光,刘清华,薛国庆,方小宇,唐慧敏. 海上低渗油藏大井距精细注水技术应用实践. 承德石油高等专科学校学报. 2020(02): 11-15+37 .
    4. 刘阳. 高温深层碳酸盐岩裸眼酸压完井封隔器研制与现场试验. 石油钻探技术. 2020(06): 76-81 . 本站查看
    5. 刘彪,潘丽娟,张俊,白彬珍,李双贵. 顺北区块超深小井眼水平井优快钻井技术. 石油钻探技术. 2016(06): 11-16 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (456) PDF downloads (83) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return