XIA Haibang. The Research and Field Testing of Dual Temporary Plugging Fracturing Technology for Shale Gas Wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90-96. DOI: 10.11911/syztjs.2020065
Citation: XIA Haibang. The Research and Field Testing of Dual Temporary Plugging Fracturing Technology for Shale Gas Wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90-96. DOI: 10.11911/syztjs.2020065

The Research and Field Testing of Dual Temporary Plugging Fracturing Technology for Shale Gas Wells

More Information
  • Received Date: January 15, 2020
  • Revised Date: March 22, 2020
  • Available Online: May 08, 2020
  • Temporary plugging fracturing of shale gas wells has been challenged by the problems of insignificant temporary plugging pressure increases, the fact that the temporary plugging pressure sometimes does not transmit to the fracture, and sometimes unsuccessful combinations of inter-cluster temporary plugging and intra-fracture temporary plugging. Hence, a dual temporary plugging fracturing technology for shale gas wells was developed by adopting a GTF-SM differential pressure polymer-cemented temporary plugging agent and optimizing its dosage. It was also necessary to optimize inter-cluster temporary plugging and intra-fracture temporary plugging fracturing processes. This technology was tested for 10 stages in the staged fracturing of Well Jiaoye LQ-1HF in the Nanchuan Shale Gas Field. Compared with the stages treated with the conventional fracturing technologies, the temporary plugging pressure of the inter-cluster temporary plugging test section was increased by 4.3 MPa, and the temporary plugging pressure of the intra-fracture temporary plugging test section was increased by 0.82 MPa. The fracture length of the test section was increased by 5.8%, and the fracture area was increased by 12.5% on average. The well was tested with a ϕ10.0 mm choke, and the average gas production was 23.37×104 m3/d, the average casing pressure was 20.17 MPa and the fluid production was 277.44 m3/d, which were advantageous over those of the conventional fracturing technologies. The test results showed that the dual temporary plugging fracturing technology for shale gas wells could form a better complex fracture network and enable the high-efficiency development and cost-effective fracturing of shale gas fields, hence showing a good value for wide adoption and application.

  • [1]
    雷林,张龙胜,熊炜,等. 武隆区块常压页岩气水平井分段压裂技术[J]. 石油钻探技术, 2019, 47(1): 76–82. doi: 10.11911/syztjs.2018129

    LEI Lin, ZHANG Longsheng, XIONG Wei, et al. Multi-stage fracturing technology of normally pressured shale gas in horizontal wells in the Wulong Block[J]. Petroleum Drilling Techniques, 2019, 47(1): 76–82. doi: 10.11911/syztjs.2018129
    [2]
    周成香,吴壮坤,丁桥. 电动压裂泵在页岩气井压裂中的先导试验[J]. 石油机械, 2018, 46(11): 104–108.

    ZHOU Chengxiang, WU Zhuangkun, DING Qiao. Pilot test of electric fracturing pump in shale gas well[J]. China Petroleum Machinery, 2018, 46(11): 104–108.
    [3]
    陈安明,龙志平,周玉仓,等. 四川盆地外缘常压页岩气水平井低成本钻井技术探讨[J]. 石油钻探技术, 2018, 46(6): 9–14.

    CHEN Anming, LONG Zhiping, ZHOU Yucang, et al. Discussion on low-cost drilling technologies of normal pressure shale gas in the outer margin of the Sichuan Basin[J]. Petroleum Drilling Techniques, 2018, 46(6): 9–14.
    [4]
    夏海帮. 可溶桥塞在南川页岩气田的应用研究[J]. 油气藏评价与开发, 2019, 9(4): 79–82. doi: 10.3969/j.issn.2095-1426.2019.04.015

    XIA Haibang. Research and application of soluble bridge plug in Nanchuan shale gas field[J]. Reservoir Evaluation and Development, 2019, 9(4): 79–82. doi: 10.3969/j.issn.2095-1426.2019.04.015
    [5]
    习传学,高东伟,陈新安,等. 涪陵页岩气田西南区块压裂改造工艺现场试验[J]. 特种油气藏, 2018, 25(1): 155–159. doi: 10.3969/j.issn.1006-6535.2018.01.032

    XI Chuanxue, GAO Dongwei, CHEN Xinan, ea al. Field test of fracturing technology in the Southwest Section of Fuling Shale Gas Field[J]. Special Oil & Gas Reservoirs, 2018, 25(1): 155–159. doi: 10.3969/j.issn.1006-6535.2018.01.032
    [6]
    刘伟,何龙,胡大梁,等. 川南海相深层页岩气钻井关键技术[J]. 石油钻探技术, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118

    LIU Wei, HE Long, HU Daliang, et al. Key technologies for deep marine shale gas drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118
    [7]
    时贤,程远方,常鑫,等. 页岩气水平井段内多簇裂缝同步扩展模型建立与应用[J]. 石油钻采工艺, 2018, 40(2): 247–252.

    SHI Xian, CHENG Yuanfang, CHANG Xin, et al. Establishment and application of the model for the synchronous propagation of multi-cluster fractures in the horizontal section of shale-gas horizontal well[J]. Oil Drilling & Production Technology, 2018, 40(2): 247–252.
    [8]
    潘军,刘卫东,张金成. 涪陵页岩气田钻井工程技术进展与发展建议[J]. 石油钻探技术, 2018, 46(4): 9–15.

    PAN Jun, LIU Weidong, ZHANG Jincheng. Drilling technology progress and recommendations for the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(4): 9–15.
    [9]
    罗韵东,张全立,郭慧娟,等. 页岩气可膨胀衬管重复压裂技术现状与发展[J]. 石油矿场机械, 2019, 48(1): 81–85. doi: 10.3969/j.issn.1001-3482.2019.01.016

    LUO Yundong, ZHANG Quanli, GUO Huijuan, et al. Technology status and development for ESeal RF liner[J]. Oil Field Equipment, 2019, 48(1): 81–85. doi: 10.3969/j.issn.1001-3482.2019.01.016
    [10]
    方裕燕,冯炜,张雄,等. 炮眼暂堵室内实验研究[J]. 钻采工艺, 2018, 41(6): 102–105. doi: 10.3969/J.ISSN.1006-768X.2018.06.29

    FANG Yuyan, FENG Wei, ZHANG Xiong, et al. Experimental study on temporary plugging of perforations[J]. Drilling & Production Technology, 2018, 41(6): 102–105. doi: 10.3969/J.ISSN.1006-768X.2018.06.29
    [11]
    周彤,陈铭,张士诚,等. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化[J]. 天然气工业, 2020, 40(3): 82–91. doi: 10.3787/j.issn.1000-0976.2020.03.010

    ZHOU Tong, CHEN Ming, ZHANG Shicheng, et al. Simulation of fracture propagation and optimization of ball-sealer in-stage diversion under the effect of heterogeneous stress field[J]. Natural Gas Industry, 2020, 40(3): 82–91. doi: 10.3787/j.issn.1000-0976.2020.03.010
    [12]
    路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–9.

    LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
    [13]
    蒋廷学,贾长贵,王海涛,等. 页岩气网络压裂设计方法研究[J]. 石油钻探技术, 2011, 39(3): 36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006

    JIANG Tingxue, JIA Changgui, WANG Haitao, et al. Study on network fracturing design method in shale gas[J]. Petroleum Drilling Techniques, 2011, 39(3): 36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006
    [14]
    王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术[J]. 石油钻探技术, 2018, 46(2): 81–86.

    WANG Kun, GE Tengze, ZENG Wenting. Re-fracturing technique using forced fracture re-orientation of low production oil and gas wells[J]. Petroleum Drilling Techniques, 2018, 46(2): 81–86.
    [15]
    王贤君,王维,张玉广,等. 低渗透储层缝内暂堵多分支缝压裂技术研究[J]. 石油地质与工程, 2018, 32(3): 111–113. doi: 10.3969/j.issn.1673-8217.2018.03.029

    WANG Xianjun, WANG Wei, ZHANG Yuguang, et al. Multi-branch fracturing technique of low permeability reservoirs by temporary plugging within fractures[J]. Petroleum Geology and Engineering, 2018, 32(3): 111–113. doi: 10.3969/j.issn.1673-8217.2018.03.029
    [16]
    王刚. 低渗透油田缝内转向压裂增产技术研究与应用[J]. 化学工程与装备, 2017(4): 63–65.

    WANG Gang. Research and application of in fracture diverting fracturing stimulation technology in low permeability oilfield[J]. Fujian Chemical Industry, 2017(4): 63–65.
    [17]
    陈志刚,杨富,陶荣德,等. 缝内转向压裂工艺技术在姬塬油田老井改造中的应用及评价[J]. 石油化工应用, 2019, 38(2): 78–83. doi: 10.3969/j.issn.1673-5285.2019.02.018

    CHEN Zhigang, YANG Fu, TAO Rongde, et al. Application and evaluation of steering fracturing technology in the reconstruction of old wells in Jiyuan Oilfield[J]. Petrochemical Industry Application, 2019, 38(2): 78–83. doi: 10.3969/j.issn.1673-5285.2019.02.018
  • Related Articles

    [1]DAI Ling, JIANG Renkai, SUN Changwei, PEI Bolin, ZHAO Wei. Water Control through Particle Huff and Puff for Horizontal Wells with Severe Fluid Loss in Fractured-Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 91-97. DOI: 10.11911/syztjs.2024013
    [2]JIN Taiyu. Study on Three-Dimensional Fluid-Solid Coupling Model of Drilling Fluid Leakage in Rough Fracture Network[J]. Petroleum Drilling Techniques, 2024, 52(1): 69-77. DOI: 10.11911/syztjs.2023100
    [3]ZENG Yijin, LI Daqi, CHEN Zengwei, ZHANG Dujie, CUI Yahui, ZHANG Feifei. Loss Analysis and Diagnosis Based on Natural Language Processing and Big Data Analysis[J]. Petroleum Drilling Techniques, 2023, 51(6): 1-11. DOI: 10.11911/syztjs.2023108
    [4]KANG Yili, TIAN Guofeng, YOU Lijun, YAN Xiaopeng, XU Chengyuan. Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033
    [5]LAN Kunxiang, ZHANG Xingguo, AI Zhengqing, YUAN Zhongtao, XU Liqun, LIU Zhongfei. Research on the Rheological Properties of Drilling Fluids in Annular Spacefor Cementing at Low Shear Rates in Kuqa Piedmont[J]. Petroleum Drilling Techniques, 2021, 49(6): 55-61. DOI: 10.11911/syztjs.2021058
    [6]Li Yan. Development and Performance Evaluation of the High Temperature Resistant Polymer Fluid Loss Agent AAS[J]. Petroleum Drilling Techniques, 2015, 43(4): 96-101. DOI: 10.11911/syztjs.201504017
    [7]Zhu Bing, Nie Yuzhi, Qiu Zailei, Wang Haoren, Chen Hongzhuang, Ma Peng. Research on Fluid Loss Additives of AMPS/DMAM/AA in Well Cementing[J]. Petroleum Drilling Techniques, 2014, 42(6): 40-44. DOI: 10.11911/syztjs.201406008
    [8]Zhang Jinkai, Li Gensheng, Huang Zhongwei, Tian Shouceng, Shi Huaizhong. Behavior of Herschel-Bulkely Fluid Flow in Whirl Drill String[J]. Petroleum Drilling Techniques, 2013, 41(5): 82-88. DOI: 10.3969/j.issn.1001-0890.2013.05.016
    [9]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
    [10]Liu Xuepeng, Zhang Mingchang, Ding Shidong, Liu Wei, Wang Xiaojing. Synthesis and Properties of a High-Temperature Grafting Polyvinyl Alcohol Fluid Loss Additive[J]. Petroleum Drilling Techniques, 2012, 40(3): 58-61. DOI: 10.3969/j.issn.1001-0890.2012.03.012
  • Cited by

    Periodical cited type(9)

    1. 赵崇胜,王波,苟波,罗鹏飞,陈国军,巫国全. 深部煤层气油电混驱压裂设备配置与工艺技术. 油气藏评价与开发. 2025(02): 292-299 .
    2. 张国友. 页岩油全电动压裂装备配置与作业技术研究. 石油机械. 2024(03): 102-107 .
    3. 陈万锋. 道路工程中的技术分析及预制混凝土路面板的力学性能分析. 交通科技与管理. 2024(06): 83-85 .
    4. 乔玲茜,王本强,陈雨松,何启越,蔡金赤,续化蕾,江厚顺. 页岩气藏暂堵转向压裂裂缝扩展规律模拟. 断块油气田. 2024(02): 241-245+265 .
    5. 杨亚东,邹龙庆,王一萱,朱静怡,李小刚,熊俊雅. 川南深层页岩气藏压裂裂缝导流能力影响因素分析. 特种油气藏. 2024(05): 162-167 .
    6. 尤璐. 页岩油气压裂作业环境保护技术浅析. 化工安全与环境. 2023(09): 65-68 .
    7. 李方淼. 电动压裂供电技术研究. 石油和化工设备. 2023(08): 129-132 .
    8. 唐瑞欢. 川渝地区页岩气压裂设备发展新方向. 石油机械. 2023(09): 94-100 .
    9. 郭建春,任文希,曾凡辉,罗扬,李宇麟,杜肖泱. 非常规油气井压裂参数智能优化研究进展与发展展望. 石油钻探技术. 2023(05): 1-7+179 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1300) PDF downloads (122) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return