Citation: | KANG Yili, TIAN Guofeng, YOU Lijun, YAN Xiaopeng, XU Chengyuan. Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033 |
[1] |
臧艳彬,王瑞和,张锐. 川东北地区钻井漏失及堵漏措施现状分析[J]. 石油钻探技术,2011,39(2):60–64. doi: 10.3969/j.issn.1001-0890.2011.02.011
ZANG Yanbin, WANG Ruihe, ZHANG Rui. Current situation analysis of circulation lost and measures in Northeast Sichuan Basin[J]. Petroleum Drilling Techniques, 2011, 39(2): 60–64. doi: 10.3969/j.issn.1001-0890.2011.02.011
|
[2] |
KANG Yili, YOU Lijun, XU Xinghua, et al. Prevention of formation damage induced by mud lost in deep fractured tight gas reservoir in Western Sichuan Basin[J]. Journal of Canadian Petroleum Technology, 2012, 51(1): 46–51. doi: 10.2118/131323-PA
|
[3] |
张杜杰,金军斌,陈瑜,等. 深部裂缝性致密储层随钻堵漏材料补充时机研究[J]. 特种油气藏,2020,27(6):158–164.
HANG Dujie, JIN Junbin, CHEN Yu, et al. Study on the supplement timing of leakage stoppage materials while drilling for deep fractured tight reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 158–164.
|
[4] |
王建云,杨晓波,王鹏,等. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术,2020,48(3):8–15.
WANG Jianyun, YANG Xiaobo, WANG Peng, et al. Technologies for the safe drilling of fractured carbonate gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 8–15.
|
[5] |
周志世,张震,张欢庆,等. 长裸眼多层系砂泥岩互层井底断层洞穴裂缝失返井漏桥接堵漏工艺技术[J]. 钻井液与完井液,2020,37(4):456–464.
ZHOU Zhishi, ZHANG Zhen, ZHANG Huanqing, et al. Controlling mud losses into caves with bridging techniques in ultra-deep long open hole[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 456–464.
|
[6] |
李冬梅,柳志翔,李林涛,等. 顺北超深断溶体油气藏完井技术[J]. 石油钻采工艺,2020,42(5):600–605.
LI Dongmei, LIU Zhixiang, LI Lintao, et al. Well completion technologies for the ultra-deep fault-dissolved oil and gas reservoir in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2020, 42(5): 600–605.
|
[7] |
王维斌,马廷虎,邓团. 川东宣汉–开江地区恶性井漏特征及地质因素[J]. 天然气工业,2005,25(2):90–92. doi: 10.3321/j.issn:1000-0976.2005.02.029
WANG Weibin, MA Tinghu, DENG Tuan. Characteristics and geological factors of vicious lost circulation in Xuanhan-Kaijiang Area of East Sichuan[J]. Natural Gas Industry, 2005, 25(2): 90–92. doi: 10.3321/j.issn:1000-0976.2005.02.029
|
[8] |
杨振杰. 国外礁灰岩漏失地层钻井技术[J]. 钻井液与完井液,2004,21(1):45–49. doi: 10.3969/j.issn.1001-5620.2004.01.014
YANG Zhenjie. Drilling technology for biolithite loss zone abroad[J]. Drilling Fluid & Completion Fluid, 2004, 21(1): 45–49. doi: 10.3969/j.issn.1001-5620.2004.01.014
|
[9] |
MAURY V, GUENOT A. Practical advantages of mud cooling systems for drilling[J]. SPE Drilling & Completion, 1995, 10(1): 42-48.
|
[10] |
YAN Wei, GE Hongkui, WANG Jianbo, et al. Experimental study of the friction properties and compressive shear failure behaviors of gas shale under the influence of fluids[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 153–161. doi: 10.1016/j.jngse.2016.04.019
|
[11] |
邹雨时,张士诚,马新仿. 页岩压裂剪切裂缝形成条件及其导流能力研究[J]. 科学技术与工程,2013,13(18):5152–5157. doi: 10.3969/j.issn.1671-1815.2013.18.013
ZOU Yushi, ZHANG Shicheng, MA Xinfang. Research on the formation conditions and conductivity of shear fracture for hydraulic fracturing in gas-shale[J]. Science Technology and Engineering, 2013, 13(18): 5152–5157. doi: 10.3969/j.issn.1671-1815.2013.18.013
|
[12] |
FREDD C N, MCCONNELL S B, BONEY C L, et al. Experimental study of fracture conductivity for water-fracturing and conventional fracturing applications[J]. SPE Journal, 2001, 6(3): 288–298. doi: 10.2118/74138-PA
|
[13] |
YAN Xiaopeng, YOU Lijun, KANG Yili, et al. Impact of drilling fluids on friction coefficient of brittle gas shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 144–152. doi: 10.1016/j.ijrmms.2018.04.026
|
[14] |
YOU Lijun, KANG Yili, CHEN Zhangxin, et al. Wellbore instability in shale gas wells drilled by oil-based fluids[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 294–299. doi: 10.1016/j.ijrmms.2014.08.017
|
[15] |
康毅力,佘继平,林冲,等. 钻井完井液浸泡弱化页岩脆性机制[J]. 力学学报,2016,48(3):730–738. doi: 10.6052/0459-1879-15-286
KANG Yili, SHE Jiping, LIN Chong, et al. Brittleness weakening mechanisms of shale soaked by drilling & completion fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 730–738. doi: 10.6052/0459-1879-15-286
|
[16] |
康毅力, 游利军, 李大奇, 等. 高温高压钻井液漏失动态评价仪: CN201210023152.4[P]. 2012-02-02.
KANG Yili, YOU Lijun, LI Daqi, et al. High temperature and high pressure drilling fluid leakage dynamic evaluation instrument: CN201210023152.4[P]. 2012-02-02.
|
[17] |
陈平,韩强,马天寿,等. 基于微米压痕实验研究页岩力学特性[J]. 石油勘探与开发,2015,42(5):662–670.
CHEN Ping, HAN Qiang, MA Tianshou, et al. The mechanical properties of shale based on micro-indentation test[J]. Petroleum Exploration and Development, 2015, 42(5): 662–670.
|
[18] |
CHAN A W, HAUSER M, COUZENS-SCHULTZ B A, et al. An alternative interpretation of leakoff and lost circulation pressure measurements[R]. ARMA-2013-302, 2013.
|
[19] |
COUZENS-SCHULTZ B A, CHAN A W. Stress determination in active thrust belts: an alternative leak-off pressure interpretation[J]. Journal of Structural Geology, 2010, 32(8): 1061–1069. doi: 10.1016/j.jsg.2010.06.013
|
[20] |
黄元敏,马胜利,杨马陵. 不同岩性下水对断层摩擦性状影响的实验研究[J]. 地震,2015,35(4):21–29. doi: 10.3969/j.issn.1000-3274.2015.04.003
HUANG Yuanmin, MA Shengli, YANG Maling. Experimental study of water effect on frictional characteristics for different lithology[J]. Earthquake, 2015, 35(4): 21–29. doi: 10.3969/j.issn.1000-3274.2015.04.003
|
[21] |
韩秀玲,杨贤友,熊春明,等. 超深裂缝性厚层改造效果影响因素分析与高效改造对策[J]. 天然气地球科学,2017,28(8):1280–1286.
HAN Xiuling, YANG Xianyou, XIONG Chunming, et al. Influencing factors and efficient reservoir stimulation countermeasuresin thick and ultra-deep naturally fractured reservoir[J]. Natural Gas Geoscience, 2017, 28(8): 1280–1286.
|
[22] |
陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 合肥: 中国科学技术大学出版社, 2009: 172–182.
CHEN Yong, HUANG Tingfang, LIU Enru. Rock physics[M]. Hefei: University of Science and Technology of China Press, 2009: 172–182.
|
[23] |
ZHANG Huijie, LIU Shuhai, XIAO Huaping. Frictional behavior of sliding shale rock-silica contacts under guar gum aqueous solution lubrication in hydraulic fracturing[J]. Tribology International, 2018, 120: 159–165. doi: 10.1016/j.triboint.2017.12.044
|
[24] |
高文龙,姜耀东,湛川. 软弱结构面表面形态与充填度的力学特性研究[J]. 工程地质学报,2010,18(1):127–131. doi: 10.3969/j.issn.1004-9665.2010.01.019
GAO Wenlong, JIANG Yaodong, ZHAN Chuan. The study of structural-plane based on appearance and backfilling state[J]. Journal of Engineering Geology, 2010, 18(1): 127–131. doi: 10.3969/j.issn.1004-9665.2010.01.019
|
[25] |
雷国辉, 陈晶晶. 有效应力决定饱和岩土材料抗剪强度的摩擦学解释[J]. 岩土工程学报, 2011, 33(10): 1517-1525.
LEI Guohui, CHEN Jingjing. Tribological explanation of effective stress controlling shear strength of saturated geomaterials[J]. Chi-nese Journal of Geotechnical Engineering, 2011, 33(10): 1517-1525.
|
[26] |
曾义金,李大奇,杨春和. 裂缝性地层防漏堵漏力学机制研究[J]. 岩石力学与工程学报,2016,35(10):2054–2061.
ZENG Yijin, LI Daqi, YANG Chunhe. Leakage prevention and control in fractured formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2054–2061.
|
[27] |
俞杨烽. 富有机质页岩多尺度结构描述及失稳机理[D]. 成都: 西南石油大学, 2013: 61–80.
YU Yangfeng. Multi-scale structure description and borehole instability mechanism of organic rich shale[D]. Chengdu: Southwest Petroleum University, 2013: 61–80.
|
[28] |
李鹏,刘建,李国和,等. 水化学作用对砂岩抗剪强度特性影响效应研究[J]. 岩土力学,2011,32(2):380–386. doi: 10.3969/j.issn.1000-7598.2011.02.010
LI Peng, LIU Jian, LI Guohe, et al. Experimental study for shear strength characteristics of sandstone under water-rock interaction effects[J]. Rock and Soil Mechanics, 2011, 32(2): 380–386. doi: 10.3969/j.issn.1000-7598.2011.02.010
|
[29] |
WITHERSPOON P A, WANG J S Y, IWAI K, et al. Validity of cubic law for fluid flow in a deformable rock fracture[J]. Water Resources Research, 1980, 16(6): 1016–1024. doi: 10.1029/WR016i006p01016
|
[30] |
王剑波. 页岩储层缝面摩擦滑动特性研究[D]. 北京: 中国石油大学(北京), 2016: 61-62.
WANG Jianbo. Study on frictional sliding characteristics of fracture surface of shale reservoir[D]. Beijing: China University of Petroleum(Beijing), 2016: 61-62.
|
1. |
柳洁,沈德来,严锐锋,邓伟,屈文涛. 卡瓦下座用表面改性可溶性镁合金耐腐蚀性能研究. 石油钻探技术. 2024(03): 118-126 .
![]() | |
2. |
张毅,任勇强,李瑞祺,郭云鹏,李宁,杨东. 油气井富含CO_2酸性环境下Ca~(2+)对可降解铝镁合金的影响. 天然气勘探与开发. 2022(03): 75-81 .
![]() | |
3. |
赵金洲,任岚,蒋廷学,胡东风,吴雷泽,吴建发,尹丛彬,李勇明,胡永全,林然,李小刚,彭瑀,沈骋,陈曦宇,尹庆,贾长贵,宋毅,王海涛,李远照,吴建军,曾斌,杜林麟. 中国页岩气压裂十年:回顾与展望. 天然气工业. 2021(08): 121-142 .
![]() | |
4. |
王明凯,文星星,段纪青,陈振宇,周爱军. PBS/HNBR共混可降解橡胶的制备与性能. 武汉工程大学学报. 2021(05): 529-533 .
![]() | |
5. |
刘超群. 大庆油田不动管柱6~8层压裂工艺. 油气井测试. 2021(05): 44-49 .
![]() | |
6. |
张毅,杨继现,张伟,聂伟,刘昌泰,周萌. 可降解压裂封隔器材料优选及设计. 西部探矿工程. 2020(04): 75-78 .
![]() | |
7. |
王红丽. 不动管柱压裂工艺封隔器及配套工具优化. 油气井测试. 2020(02): 32-36 .
![]() | |
8. |
廖勇. 一种桥塞坐封试验测试装置的研制. 江汉石油职工大学学报. 2019(01): 34-37 .
![]() | |
9. |
张毅,李景卫,杨小涛,张伟,刘晓林,王荫刚. 新型可降解压裂封隔器胶筒. 油气井测试. 2019(02): 51-55 .
![]() | |
10. |
王乐顶,王怀婧,陈新海,槐巧双,李晓勇. 井下圆球运动分析与新型试压体设计. 探矿工程(岩土钻掘工程). 2019(05): 44-47 .
![]() | |
11. |
杨同玉,魏辽,李强,朱和明,吴晋霞. 全自溶分段压裂滑套的研制与应用. 特种油气藏. 2019(03): 153-157 .
![]() | |
12. |
张锦宏. 中国石化石油工程技术现状及发展建议. 石油钻探技术. 2019(03): 9-17 .
![]() | |
13. |
王鹏. 电缆输送式电动液压坐封桥塞技术. 油气井测试. 2019(05): 39-43 .
![]() | |
14. |
纪志康,于思荣,刘丽,姜倩,刘迪. Al含量对漂珠/镁合金可溶复合材料组织与性能的影响. 复合材料学报. 2018(05): 1211-1218 .
![]() | |
15. |
周歆,杨小城. 可降解压裂球试验研究及现场应用. 石油矿场机械. 2018(01): 62-66 .
![]() | |
16. |
路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望. 石油钻探技术. 2018(01): 1-9 .
![]() | |
17. |
张毅,于丽敏,任勇强,杨东,张宇,冯丹. 一种新型可降解压裂封隔器坐封球. 油气井测试. 2018(02): 53-58 .
![]() | |
18. |
周小林,高志华,张冲. 龙凤山气田大通径免钻桥塞分段压裂先导试验. 油气井测试. 2018(01): 62-67 .
![]() | |
19. |
仇炜谏,李纯金,吉浩,周宏根. 一种新型电动式液压增力桥塞坐封工具的研制. 机械工程师. 2018(10): 13-15 .
![]() | |
20. |
钟诗宇,关馨,王小红. 水平井分段压裂用桥塞研究现状及发展趋势. 新疆石油科技. 2018(03): 35-38 .
![]() | |
21. |
王林,张世林,平恩顺,邹鹏,李楠,黄其,徐庆祥. 分段压裂用可降解桥塞研制及其性能评价. 科学技术与工程. 2017(24): 228-232 .
![]() | |
22. |
张芬娜,张晧,綦耀光,朱洪迎,张健,张兵,郭晖. 基于煤系气双管柱分压合采技术的适用性分析. 煤炭学报. 2017(10): 2657-2661 .
![]() | |
23. |
平恩顺,王林,邹鹏,张建华,李楠,黄其,徐庆祥,汪强,邓立泽. 分段压裂工具用可降解金属材料降解性能研究. 石油化工应用. 2017(02): 133-136 .
![]() | |
24. |
何汉平. 一种新的油气井射孔丢枪管柱设计. 石油矿场机械. 2017(04): 52-56 .
![]() | |
25. |
李鹏飞,刘旭辉,王杰. 免钻型大通径桥塞研制与应用现状. 石油矿场机械. 2016(11): 93-97 .
![]() |