LAN Kunxiang, ZHANG Xingguo, AI Zhengqing, YUAN Zhongtao, XU Liqun, LIU Zhongfei. Research on the Rheological Properties of Drilling Fluids in Annular Spacefor Cementing at Low Shear Rates in Kuqa Piedmont[J]. Petroleum Drilling Techniques, 2021, 49(6): 55-61. DOI: 10.11911/syztjs.2021058
Citation: LAN Kunxiang, ZHANG Xingguo, AI Zhengqing, YUAN Zhongtao, XU Liqun, LIU Zhongfei. Research on the Rheological Properties of Drilling Fluids in Annular Spacefor Cementing at Low Shear Rates in Kuqa Piedmont[J]. Petroleum Drilling Techniques, 2021, 49(6): 55-61. DOI: 10.11911/syztjs.2021058

Research on the Rheological Properties of Drilling Fluids in Annular Spacefor Cementing at Low Shear Rates in Kuqa Piedmont

More Information
  • Received Date: December 26, 2020
  • Revised Date: July 30, 2021
  • Available Online: September 02, 2021
  • Due to the frequent lost circulation of drilling fluids while running casing for cementing at the fourth and fifth sections in ultra-deep natural gas wells in the tectonic belt of Kuqa Piedmont in Tarim Basin, the actual shear rates of annular drilling fluid while running casing were analyzed. On the basis of the Herschel-Bulkley model, the test data collected at full shear rates (1.70–1021.40 s–1) and low shear rates (1.70–340.50 s–1) were used to fit the corresponding rheological parameters of the oil-base drilling fluid respectively, and to analyze the surge pressure difference under the two scenarios. The research found out that in Kuqa Piedmont, the actual shear rates during casing running were far less than the highest value (1021.40 s–1) of regular full shear rates, and the rheological parameters varied greatly with the change of temperature and pressure at full and low shear rates. Moreover, the casing surge pressure at full shear rates was lower than that at low shear rates, and with the increase in well depth, the surge pressure difference between them was greater. The results showed that for natural gas wells with narrow safety density windows, the range of actual low shear rates of drilling fluid should be taken as the basis of fitting corresponding rheological parameters, and based on which, proper casing running speed should be designed to control the lost circulation according to the allowable surge pressure in the process.
  • [1]
    滕学清, 张兴国, 李宁, 等. 塔里木油田库车山前固井新技术[M]. 北京: 石油工业出版社, 2019: 1–3.

    TENG Xueqing, ZHANG Xingguo, LI Ning, et al. New cementing technology in Kuqa Piedmont of Tarim Oilfield[M]. Beijing: Petroleum Industry Press, 2019: 1–3.
    [2]
    任保友,刘锋报,徐兴梁,等. 塔里木山前构造克深某区块盐膏层井漏技术处理[J]. 西部探矿工程,2018,30(2):75–78. doi: 10.3969/j.issn.1004-5716.2018.02.027

    REN Baoyou, LIU Fengbao, XU Xingliang, et al. Technical treatment of lost circulation in a salt-gypsum layer in a Keshen Block in the Tarim piedmont structure[J]. West-China Exploration Engineering, 2018, 30(2): 75–78. doi: 10.3969/j.issn.1004-5716.2018.02.027
    [3]
    李健,李早元,辜涛,等. 塔里木山前构造高密度油基钻井液固井技术[J]. 钻井液与完井液,2014,31(2):51–54. doi: 10.3969/j.issn.1001-5620.2014.02.014

    LI Jian, LI Zaoyuan, GU Tao, et al. Cementing technology for wells drilled with high density oil base drilling fluid in piedmont structure of Tarim Basin[J]. Drilling Fluid & Completion Fluid, 2014, 31(2): 51–54. doi: 10.3969/j.issn.1001-5620.2014.02.014
    [4]
    李平. 低速梯下钻井液流变性和触变性研究[D]. 成都: 西南石油大学, 2009.

    LI Ping. Research on rheology and thixotropy of drilling fluid under low-speed ladder[D]. Chengdu: Southwest Petroleum University, 2009.
    [5]
    张现斌,赵冲,王伟忠,等. 矿物油基钻井液低剪切流变行为调节技术研究[J]. 中国石油勘探,2015,20(4):63–70. doi: 10.3969/j.issn.1672-7703.2015.04.007

    ZHANG Xianbin, ZHAO Chong, WANG Weizhong, et al. Technologies to modify low-shear rate rheology behaviors of mineral oil based drilling fluids[J]. China Petroleum Exploration, 2015, 20(4): 63–70. doi: 10.3969/j.issn.1672-7703.2015.04.007
    [6]
    刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28. doi: 10.11911/syztjs.2020034

    LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28. doi: 10.11911/syztjs.2020034
    [7]
    王治国,周鹏成,徐璧华,等. 固井安全下套管速度分析[J]. 江汉石油职工大学学报,2014,27(6):20–22. doi: 10.3969/j.issn.1009-301X.2014.06.007

    WANG Zhiguo, ZHOU Pengcheng, XU Bihua, et al. Velocity analysis of the safety of casing in cementing operation[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2014, 27(6): 20–22. doi: 10.3969/j.issn.1009-301X.2014.06.007
    [8]
    TENG X, YANG P, LI N, et al. Successful HPHT drilling through innovative practices: sharing the subsalt HPHT well drilling case in Tarim Basin[R]. SPE172782, 2015.
    [9]
    李晓春,李坤,刘锐,等. 塔里木盆地超深天然气井全过程塞流防漏注水泥技术[J]. 天然气工业,2016,36(10):102–109. doi: 10.3787/j.issn.1000-0976.2016.10.013

    LI Xiaochun, LI Kun, LIU Rui, et al. Plug flow based full-process leakage-proof cementing technology for ultra-deep gas wells in the Tarim Basin[J]. Natural Gas Industry, 2016, 36(10): 102–109. doi: 10.3787/j.issn.1000-0976.2016.10.013
    [10]
    周健,贾红军,刘永旺,等. 库车山前超深超高压盐水层安全钻井技术探索[J]. 钻井液与完井液,2017,34(1):54–59. doi: 10.3969/j.issn.1001-5620.2017.01.010

    ZHOU Jian, JIA Hongjun, LIU Yongwang, et al. Research on safe drilling technology for ultra deep ultrahigh pressure saltwater zones in piedmont area, Kuche[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 54–59. doi: 10.3969/j.issn.1001-5620.2017.01.010
    [11]
    YAN Ye, AN Wenhua, WANG Shuqi, et al. Drilling fluid challenge during the ultra-deep HT/HP/HS drilling in the mountainous area, Tarim Basin[R]. SPE 131533, 2010.
    [12]
    朱仁发, 喻可彬, 熊明勇. 库车山前钻井技术难点及技术对策: 以大北208井为例[C]//2017年全国天然气学术年会论文集, 杭州: 中国石油学会天然气专业委员, 2017: 2472–2480.

    ZHU Renfa, YU Kebin, XIONG Mingyong. Drilling technology difficulties and technical countermeasures in Kuqa Piedmont: taking Dabei 208 Well as an example[C]//Proceedings of 2017 National Natural Gas Academic Conference, Hangzhou: Member of Natural Gas Discipline of China Petroleum Society, 2017: 2472–2480.
    [13]
    樊洪海,刘希圣. 赫谢尔—巴尔克莱液体直井稳态波动压力计算模式[J]. 石油钻探技术,1994,22(1):51–54.

    FAN Honghai, LIU Xisheng. An accurate steady surge pressure model for Herschel–Bulkley fluid in a vertical well[J]. Petroleum Drilling Techniques, 1994,22(1): 51–54.
    [14]
    韩付鑫,樊洪海,彭齐,等. 基于赫巴流体的薄弱地层套管下放速度预测[J]. 钻采工艺,2017,40(2):17–19. doi: 10.3969/J.ISSN.1006-768X.2017.02.06

    HAN Fuxin, FAN Honghai, PENG Qi, et al. Prediction of casing running velocity through weak formation based on Hershel–Buckley flow model[J]. Drilling & Production Technology, 2017, 40(2): 17–19. doi: 10.3969/J.ISSN.1006-768X.2017.02.06
    [15]
    张晋凯,李根生,郭宇健. 钻井液流变模式的优选与评价[J]. 科学技术与工程,2013,13(26):7619–7623, 7628. doi: 10.3969/j.issn.1671-1815.2013.26.004

    ZHANG Jinkai, LI Gensheng, GUO Yujian. Optimization and evaluation on drilling fluid rheological model[J]. Science Technology and Engineering, 2013, 13(26): 7619–7623, 7628. doi: 10.3969/j.issn.1671-1815.2013.26.004
    [16]
    BURKHARDT J A. Wellbore pressure surges produced by pipe movement[J]. Journal of Petroleum Technology, 1961, 13(6): 595–605. doi: 10.2118/1546-G-PA
    [17]
    刘亚鑫. 塔里木超深井窄安全密度窗口下套管防漏技术研究[D]. 成都: 西南石油大学, 2019.

    LIU Yaxin. Research on casing leakage prevention technology under narrow safety density window in Tarim ultra-deep well[D]. Chengdu: Southwest Petroleum University, 2019.
    [18]
    支亚靓. 库车山前固井下套管防漏失技术研究[D]. 成都: 西南石油大学, 2015.

    ZHI Yaliang. Research on casing loss prevention technology for cementing in Kuche Mountain front[D]. Chengdu: Southwest Petroleum University, 2015.
  • Related Articles

    [1]CAO Huaqing, YAN Jiancheng, LONG Zhiping. Safe and Efficient Drilling Technologies for Shallow Karst Strata for Shale Gas Wells in Southeast Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 22-28. DOI: 10.11911/syztjs.2023007
    [2]YANG Jing, TU Fuhong, HUO Rujun, TAO Ruidong, SHANG Zibo, GUO Liang. Key Technologies for Slim Hole Drilling in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 22-27. DOI: 10.11911/syztjs.2020082
    [3]SHEN Zhaochao, HUO Rujun, YU Yanfei, DONG Yifan, NI Xiaowei, LEI Yu. One-Trip Drilling Technology of the Second-Spud Section for Slim-Holes in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2020, 48(6): 15-20. DOI: 10.11911/syztjs.2020081
    [4]ZENG Bo, WANG Xinghao, HUANG Haoyong, ZHANG Nanqiao, YUE Wenhan, DENG Qi. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073
    [5]WANG Jianlong, FENG Guanxiong, LIU Xuesong, GUO Rui, GAO Xuesheng, HUO Yang. Key Technology for Drilling and Completion of Shale Gas Horizontal Wells with Ultra-Long Horizontal Sections in Changning Block[J]. Petroleum Drilling Techniques, 2020, 48(5): 9-14. DOI: 10.11911/syztjs.2020086
    [6]LIU Wei, HE Long, HU Daliang, LI Wensheng, JIAO Shaoqing. Key Technologies for Deep Marine Shale Gas Drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9-14. DOI: 10.11911/syztjs.2019118
    [7]HONG Guobin, CHEN Mian, LU Yunhu, JIN Yan. Study on the Anisotropy Characteristics of Deep Shale in the Southern Sichuan Basin and Their Impacts on Fracturing Pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78-85. DOI: 10.11911/syztjs.2018022
    [8]Sun Kunzhong, Liu Jiangtao, Wang Wei, Li Yongjie, Qin Liming. Geosteering Drilling Techniques of Horizontal Sidetracking Well JA, Southeast Sichuan[J]. Petroleum Drilling Techniques, 2015, 43(4): 138-142. DOI: 10.11911/syztjs.201504025
    [9]Tang Jiagui. Discussion on Shale Gas Horizontal Drilling Technology in Southern Sichuan[J]. Petroleum Drilling Techniques, 2014, 42(5): 47-51. DOI: 10.11911/syztjs.201405008
    [10]Chao Guiye. Optimized Horizontal Well Drilling Technologies for Volcanic Formations in Songnan Area[J]. Petroleum Drilling Techniques, 2013, 41(6): 62-67. DOI: 10.3969/j.issn.1001-0890.2013.06.012
  • Cited by

    Periodical cited type(4)

    1. 陈小璐,张雨菲,罗伟疆,蔡卓林,鱼文军. 水平井体积压裂套管变形预测方法与防控措施. 新疆石油天然气. 2025(01): 61-68 .
    2. 尹奥博,李军,连威,张辉. 页岩气水平井套管变形机理及控制方法研究进展. 新疆石油天然气. 2025(01): 50-60 .
    3. 杨尚谕,闫炎,韩礼红,曹婧,牟易升. 页岩油气井筒全生命周期完整性技术研究进展. 石油管材与仪器. 2024(03): 1-6+111-112 .
    4. 陈付虎,柴妮娜,李嘉瑞,朱伦,何田素. 砂泥互层储层条件下水力裂缝扩展实验研究. 当代化工研究. 2024(19): 70-72 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (519) PDF downloads (79) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return