Zhu Bing, Nie Yuzhi, Qiu Zailei, Wang Haoren, Chen Hongzhuang, Ma Peng. Research on Fluid Loss Additives of AMPS/DMAM/AA in Well Cementing[J]. Petroleum Drilling Techniques, 2014, 42(6): 40-44. DOI: 10.11911/syztjs.201406008
Citation: Zhu Bing, Nie Yuzhi, Qiu Zailei, Wang Haoren, Chen Hongzhuang, Ma Peng. Research on Fluid Loss Additives of AMPS/DMAM/AA in Well Cementing[J]. Petroleum Drilling Techniques, 2014, 42(6): 40-44. DOI: 10.11911/syztjs.201406008

Research on Fluid Loss Additives of AMPS/DMAM/AA in Well Cementing

More Information
  • Received Date: May 21, 2014
  • Revised Date: September 24, 2014
  • In order to improve the temperature-resistance performance of some domestic fluid loss additives and to understand their poor compatibility with other additives as well as their comprehensive properties,a cement fluid loss additive was synthesized using monomers acrylic acid (AA),2-acrylamido-2-methyl-propane sulphonic acid (AMPS) and N,N-dimethyl acrylamide(DMAM)through aqueous solution polymerization.The micro-structural characterization of AMPS/DMAM/AA was analyzed and its performance was tested.The result showed that copolymer AMPS/DMAM/AA has the structure of all monomers and can resist high temperatures up to 380℃.When the amount of AMPS/DMAM/AA was more than 3.0 %,the filtration of fresh-water cement slurry can be reduced to less than 100 mL.Moreover,the cement slurry has excellent properties such as low initial consistency,short transition time,good thickening curve without far delayed solidification and appropriate compressible strength.When the amount of AMPS/DMAM/AA is more than 4.0 %,the filtration of saturated NaCl cement slurry can be reduced to less than 80 mL.It showed that the fluid loss additive AMPS/DMAM/AA has excellent temperature-resistance and salt-tolerance and good compatibility with other additives,especially with high temperature retarders.In addition,the cement slurry that has been prepared mainly from AMPS/DMAM/AA has excellent comprehensive properties.
  • [1]
    于永金,靳建洲,刘硕琼,等.抗高温水泥浆体系研究与应用[J].石油钻探技术,2012,40(5):35-39. Yu Yongjin,Jin Jianzhou,Liu Shuoqiong,et al.Research and application of thermostable cement slurry[J].Petroleum Drilling Techniques,2012,40(5):35-39.
    [2]
    谭春勤,徐江,孙文俊,等.深井油井水泥耐盐抗温降失水剂JSS300的试验研究[J].石油钻探技术,2009,37(4):50-53. Tan Chunqin,Xu Jiang,Sun Wenjun,et al.JSS300:a high temperature and salt resistant fluid loss agent for deep well cement slurry[J].Petroleum Drilling Techniques,2009,37(4):50-53.
    [3]
    邹建龙,屈建省,许涌深,等.油井水泥降滤失剂研究进展[J].油田化学,2007,24(3):277-282. Zou Jianlong,Qu Jiansheng,Xu Yongshen,et al.Advances in fluid loss control additives for oil well cementing compositions[J].Oilfield Chemistry,2007,24(3):277-282.
    [4]
    于永金,刘硕琼,刘丽雯,等.高温水泥浆降失剂 DRF-120L 的制备与评价[J].石油钻采工艺,2011,33(3):24-27. Yu Yongjin,Liu Shuoqiong,liu Liwen,et al.Preparation and evaluation of high temperature cement slurry loss reduction additive DRF-120L[J].Oil Drilling Production Technology,2011,33(3):24-27
    [5]
    李晓岚,国安平,孙举.三元共聚物油井水泥降失水剂的室内研究[J].钻井液与完井液,2013,30(1):56-59. Li Xiaolan,Guo Anping,Sun Ju.Research on terpolymer of oil well cement filtrate raducer[J].Drilling Fluid Completion Fluid,2013,30(1):56-59.
    [6]
    刘学鹏,张明昌,丁士东,等.接枝改性聚乙烯醇的合成及性能评价[J].石油钻探技术,2012,40(3):58-61. Liu Xuepeng,Zhang Mingchang,Ding Shidong,et al.Synthesis and properties of a high-temperature grafting polyvinyl alcohol fluid loss additive[J].Petroleum Drilling Techniques,2012,40(3):58-61
    [7]
    苏俊霖,蒲晓林,任茂,等.抗高温无机/有机复合纳米降滤失剂室内研究[J].断块油气田,2012,19(5):626-628. Su Junlin,Pu Xiaolin,Ren Mao,et al.Research on inorganic/organic composite-nano fluid loss additive resistant to high temperature[J].Fault-Block Oil Gas Field,2012,19(5):626-628.
    [8]
    尹虎,钟守明,刘辉,等.稠油井火驱开发固井水泥浆性能评价与应用[J].油气地质与采收率,2013,20(4):99-101. Yin Hu,Zhong Shouming,Liu Hui,et al.Study and application of cement system for in-situ combustion in heavy oil reservoir[J].Petroleum Geology and Recovery Efficiency,2013,20(4):99-101.
    [9]
    姚杰,马礼俊,万涛,等.反相微乳液SSS/AA/AM三元共聚物钻井液降滤失剂[J].钻井液与完井液,2010,27(5):18-21. Yao Jie,Ma Lijun,Wan Tao,et al.Study on filtrate reducer made by SSS/AA/AM with inverse micro-emulsion polymerization[J].Drilling Fluid Completion Fluid,2010,27(5):18-21.
    [10]
    林荣壮,戴建文,杨勇,等.超高温降失水剂 DHTF-3 的研制与实验研究[J].钻井液与完井液,2011,28(6): 44-46. Lin Rongzhuang,Dai Jianwen,Yang Yong,et al.Experimental research on ultra-high temperature filtration control agent DHTF-3[J].Drilling Fluid Completion Fluid,2011,28(6):44-46.
    [11]
    刘爱萍,邓金根.新型丙烯酰胺共聚物油井水泥降失水剂研究[J].石油钻采工艺,2006,28(5):22-24,83. Liu Aiping,Deng Jingen.Study of new filtrate reducer of acrylamide copolymer used for cementing[J].Oil Drilling Production Technology,2006,28(5):22-24,83.
    [12]
    赵琥,邱超,宋茂林,等.深水固井低温水泥外加剂的开发及应用[J].石油钻探技术,2012,40(4):72-75. Zhao Hu,Qiu Chao,Song Maolin,et al.Development and application of additive in deepwater cementing[J].Petroleum Drilling Techniques,2012,40(4):72-75.
    [13]
    张克坚,王元敏,李银海,等.哈萨克斯坦滨里海盆地巨厚盐膏层固井技术[J].石油钻探技术,2008,36(6):82-85. Zhang Kejian,Wang Yuanmin,Li Yinhai,et al.Cementing technology used in huge salt bed in Pre-Caspian Sea Basin,Kazakstan[J].Petroleum Drilling Techniques,2008,36(6):82-85.
    [14]
    刘伟.抗冻型JYC降失水剂的室内研究与应用[J].石油钻探技术,2011,39(6):56-59. Liu Wei.Laboratory study and applications of anti-frozen JYC fluid loss additive[J].Petroleum Drilling Techniques,2011,39(6):56-59.
  • Related Articles

    [1]LI Jianhui, LI Xiang, YUE Ming, DA Yinpeng, DONG Qi, CHANG Du. Productivity Model and Seepage Rules for the Broadband Fracturing of Ultra-Low Permeability Reservoirs in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(6): 112-119. DOI: 10.11911/syztjs.2022085
    [2]SUN Huan, ZHU Mingming, ZHANG Qin, SHI Chongdong, WANG Qingchen, QU Yanping. Safe Drilling and Completion Technologies for Ultra-Long Horizontal Section of Tight Gas Horizontal Wells in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 14-19. DOI: 10.11911/syztjs.2022095
    [3]WANG Zhongliang, ZHOU Yang, WEN Xiaofeng, LONG Bin, DING Fan, CHEN Shaowei. Drilling Technologies for Horizontal Wells with Ultra-Long Horizontal Section and Slim Hole in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 14-18. DOI: 10.11911/syztjs.2021060
    [4]LI Shanshan, SUN Hu, ZHANG Mian, CHI Xiaoming, LIU Huan. Subdivision Cutting Fracturing Technology for Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92-98. DOI: 10.11911/syztjs.2021080
    [5]TIAN Fengjun, WANG Yungong, TANG Bin, LI Zhijun, LIU Keqiang. Drilling Technology for Long-Offset 3D Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 34-38. DOI: 10.11911/syztjs.2021079
    [6]NI Huafeng, YANG Guang, ZHANG Yanbing. ROP Improvement Technologies for Large-Cluster Horizontal Shale Oil Wells in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 29-33. DOI: 10.11911/syztjs.2021076
    [7]HU Zubiao, ZHANG Jianqing, WANG Qingchen, WU Fuping, HAN Chengfu, LIU Weirong. Drilling Fluid Technology for Ultra-Long Horizontal Section of Well Hua H50-7 in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 28-36. DOI: 10.11911/syztjs.2020050
    [8]YANG Lingzhi, LIU Yanqing, HU Gaixing, SHEN Xiaoli, BI Fuwei. Stratified Water Injection Technology of Concentric Seal-Check, Logging and Adjustment Integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113-117. DOI: 10.11911/syztjs.2020023
    [9]LIU Weirong, NI Huafeng, WANG Xuefeng, SHI Zhongyuan, TAN Xuebin, WANG Qingchen. Shale Oil Horizontal Drilling Technology with Super-Long Horizontal Laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9-14. DOI: 10.11911/syztjs.2020029
    [10]JIA Jun, ZHAO Xiangyang, LIU Wei. Research and Field Test of Water-Based Environmental-Friendly Membrane Forming Drilling Fluid Technology in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(5): 36-42. DOI: 10.11911/syztjs.201705007
  • Cited by

    Periodical cited type(23)

    1. 安然,刘旭华,李凯凯,钱雄涛,董传宾. 三叠系油藏堵驱结合技术的探索应用. 石油化工应用. 2024(01): 50-53 .
    2. 杨耀春,黄纯金,何吉波,李媛,杨筱珊,赵晓伟. 改性石墨高强调驱剂的制备及其矿场应用. 精细石油化工. 2024(03): 49-53 .
    3. 张雪萍,刘亮,高彪,张仙伟. 低渗透油田高压注水井在线酸化增注技术. 西安石油大学学报(自然科学版). 2024(06): 88-94 .
    4. 洪伟,程东东,杨溢,陈林,陈立峰,付美龙. 高温高盐油藏污水配聚黏度影响主控因素及调剖调驱体系研究. 长江大学学报(自然科学版). 2024(06): 97-106 .
    5. 杨雪瑞,陈铀财,高辉,刘喆. 低渗油藏调驱调剖剂应用现状研究进展. 石油化工应用. 2023(04): 12-16 .
    6. 葛罗. 大庆油田萨北区块中渗透砂岩油藏凝胶调剖剂运移吸附试验研究. 石油钻探技术. 2023(03): 119-125 . 本站查看
    7. 王威,卢祥国,刘长龙,陈征,李彦阅,吕金龙,曹伟佳,徐元德. 转向剂/乳化剂复合体系的深部调剖性能. 油田化学. 2023(03): 419-425 .
    8. 马江波,李二冬,陈塞锋,李刚,李欣欣. 低渗透油田深度调剖技术化学研究与应用评价. 当代化工. 2023(12): 2955-2958 .
    9. 龙远,刘洋,向澳洲,刘玉龙,孔维达. 聚合物微球提高油田采收率的研究与应用. 精细石油化工进展. 2022(01): 8-13 .
    10. 达引朋,李建辉,王飞,黄婷,薛小佳,余金柱. 长庆油田特低渗透油藏中高含水井调堵压裂技术. 石油钻探技术. 2022(03): 74-79 . 本站查看
    11. 安然,李凯凯,陈世栋,朱向前,钱雄涛. 纳米微球深部调驱技术在低渗透油藏的应用. 石油化工应用. 2022(06): 57-60+89 .
    12. 何吉波,王策,严阿永,乔江宏,李跃,薛伟. 华庆油田纳米聚合物微球调驱性能评价及应用. 石油化工应用. 2022(12): 26-31 .
    13. 于萌,徐国瑞,李翔,张东,盛磊,刘文辉. 海上油田低温酚醛凝胶的改进及应用. 化工科技. 2022(06): 68-72 .
    14. 李彦阅,刘义刚,卢祥国,刘进祥,张楠. 井网类型对“堵/调/驱”综合治理效果的影响——以渤海LD5-2油田为例. 大庆石油地质与开发. 2021(06): 115-123 .
    15. 尤翔程,李世远. 纳米颗粒球形度对倾斜通道中纳米流体反向混合对流传热的影响. 石油科学通报. 2021(04): 604-613 .
    16. 于萌,铁磊磊,李翔,刘文辉. 海上油田剖面调整用分散共聚物颗粒体系的研制. 石油钻探技术. 2020(02): 118-122 . 本站查看
    17. 邵明鲁,岳湘安,岳添漆,贺杰. 耐温抗剪切微球调剖剂的制备及评价. 断块油气田. 2020(03): 399-403 .
    18. 刘家林,刘涛. 深部调驱体系适应性及现场应用. 精细石油化工进展. 2020(02): 6-11 .
    19. 周雪,李辉,李媛. 裂缝性油藏多级段塞调控工艺参数优化研究. 化学工程与装备. 2019(01): 42-44 .
    20. 刘鹏虎,聂安琪,熊永安. 聚合物纳米微球调驱技术在低渗透油田的应用及效果. 石化技术. 2019(08): 77-78 .
    21. 朱家杰,施盟泉,曹荣荣,周广卿,马波,刘宇鹏. WQ100型聚合物微球理化性质及注入参数优化. 西安石油大学学报(自然科学版). 2019(05): 73-78 .
    22. 王涛,赵兵,曲占庆,郭天魁,罗攀登,王晓之. 塔河老区井周弱势通道暂堵酸压技术. 断块油气田. 2019(06): 794-799 .
    23. 于波,郭兰磊,刘璟垚,赵二猛,刘永革. 复配聚合物对驱油效果影响的核磁共振实验研究. 油气地质与采收率. 2018(05): 116-121 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (2989) PDF downloads (3557) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return