JIN Taiyu. Study on three-dimensional fluid-solid coupling model of drilling fluid leakage in rough fracture network [J]. Petroleum Drilling Techniques,2024, 52(1):69-77. DOI: 10.11911/syztjs.2023100
Citation: JIN Taiyu. Study on three-dimensional fluid-solid coupling model of drilling fluid leakage in rough fracture network [J]. Petroleum Drilling Techniques,2024, 52(1):69-77. DOI: 10.11911/syztjs.2023100

Study on Three-Dimensional Fluid-Solid Coupling Model of Drilling Fluid Leakage in Rough Fracture Network

More Information
  • Received Date: September 26, 2022
  • Revised Date: November 12, 2023
  • Available Online: November 16, 2023
  • The existing 3D fractured formation drilling fluid leakage model does not consider the influence of rough fracture network on drilling fluid leakage rate. In light of this, a rough surface topography equation of three-dimensional elliptical fractures was established, and the rough fracture was characterized by three parameters: fractal dimension, height amplitude, and the number of superimposed rough peaks. A three-dimensional fluid-solid coupling mechanical model of drilling fluid leakage in fractured formation was then established, and the cubic law of fluid flow in rough fractures was modified. The variation law of formation pressure and fracture width during drilling fluid leakage was studied. The examples show that the fractal dimension and height amplitude are positively correlated with drilling fluid leakage; the number of superimposed rough peaks is negatively correlated with the average fracture opening and drilling fluid leakage, while the maximum fracture opening is significantly positively correlated with drilling fluid leakage. The influence of fracture surface roughness should be fully considered when the particle size of the plugging material is selected. The plugging material should bridge the area where the opening is larger. The research results provide a theoretical basis for further understanding the leakage rule of drilling fluid in fractured formation and the inversion of fracture opening.

  • [1]
    康毅力,田国丰,游利军,等. 缝面摩滑:深部裂缝性地层钻井液漏失加剧的新机制[J]. 石油钻探技术,2022,50(1):45–53.

    KANG Yili, TIAN Guofeng, YOU Lijun, et al. Friction & sliding on fracture surfaces: a new mechanism for increasing drilling fluid leakage in deep fractured reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45–53.
    [2]
    陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10.

    CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10.
    [3]
    王建云,杨晓波,王鹏,等. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术,2020,48(3):8–15.

    WANG Jianyun, YANG Xiaobo, WANG Peng, et al. Key technologies for the safe drilling of fractured carbonate gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 8–15.
    [4]
    王业众,康毅力,游利军,等. 裂缝性储层漏失机理及控制技术进展[J]. 钻井液与完井液,2007,24(4):74–77.

    WANG Yezhong, KANG Yili, YOU Lijun, et al. Progresses in mechanism study and control: Mud losses to fractured reservoirs[J]. Drilling Fluid & Completion Fluid, 2007, 24(4): 74–77.
    [5]
    韩子轩,林永学,柴龙,等. 裂缝性气藏封缝堵气技术研究[J]. 钻井液与完井液,2017,34(1):16–22.

    HAN Zixuan, LIN Yongxue, CHAI Long, et al. Plugging micro-fractures to prevent gas-cut in fractured gas reservoir drilling[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 16–22.
    [6]
    雷少飞,孙金声,白英睿,等. 裂缝封堵层形成机理及堵漏颗粒优选规则[J]. 石油勘探与开发,2022,49(3):597–604.

    LEI Shaofei, SUN Jinsheng, BAI Yingrui, et al. Formation mechanisms of fracture plugging zone and optimization of plugging particles[J]. Petroleum Exploration and Development, 2022, 49(3): 597–604.
    [7]
    许成元,张洪琳,康毅力,等. 深层裂缝性储层物理类堵漏材料定量评价优选方法[J]. 天然气工业,2021,41(12):99–109.

    XU Chengyuan, ZHANG Honglin, KANG Yili, et al. Quantitative evaluation and selection method of physical plugging materials in deep fractured reservoirs[J]. Natural Gas Industry, 2021, 41(12): 99–109.
    [8]
    康毅力,郭昆,游利军,等. 考虑地应力及缝宽/粒径比的钻井堵漏材料抗压能力评价[J]. 石油钻采工艺,2021,43(1):39–47.

    KANG Yili, GUO Kun, YOU Lijun, et al. Evaluation on the compression strength of lost circulation materials considering in-situ stress and fracture width/particle size ratio[J]. Oil Drilling & Production Technology, 2021, 43(1): 39–47.
    [9]
    SANFILLIPPO F, BRIGNOLI M, SANTARELLI F J, et al. Characterization of conductive fractures while drilling[R]. SPE 38177, 1997.
    [10]
    LAVROV A, TRONVOLL J. Modeling mud loss in fractured formations[R]. SPE 88700, 2004.
    [11]
    LAVROV A, TRONVOLL J. Mechanics of borehole ballooning in naturally-fractured formations[R]. SPE 93747, 2005.
    [12]
    LIETARD O, UNWIN T, GUILLOT D, et al. Fracture width LWD and drilling mud/LCM selection guidelines in naturally fractured reservoirs[R]. SPE 36832, 1996.
    [13]
    MAJIDI R, MISKA S Z, YU M, et al. Modeling of drilling fluid losses in naturally fractured formations[R]. SPE 114630, 2008.
    [14]
    MAJIDI R, MISKA S Z, YU M, et al. Fracture ballooning in naturally fractured formations: Mechanism and controlling factors[R]. SPE 115526, 2008.
    [15]
    OZDEMIRTAS M, BABADAGLI T, KURU E. Effects of fractal fracture surface roughness on borehole ballooning[J]. Vadose Zone Journal, 2009, 8(1): 250–257. doi: 10.2136/vzj2007.0174
    [16]
    XIA Yang, JIN Yan, CHEN Mian, et al. Hydrodynamic modeling of mud loss controlled by the coupling of discrete fracture and matrix[J]. Journal of Petroleum Science and Engineering, 2015, 129: 254–267. doi: 10.1016/j.petrol.2014.07.026
    [17]
    XIA Yang, JIN Yan, CHEN Mian. Comprehensive methodology for detecting fracture aperture in naturally fractured formations using mud loss data[J]. Journal of Petroleum Science and Engineering, 2015, 135: 515–530. doi: 10.1016/j.petrol.2015.10.017
    [18]
    贾利春,陈勉,侯冰,等. 裂缝性地层钻井液漏失模型及漏失规律[J]. 石油勘探与开发,2014,41(1):95–101.

    JIA Lichun, CHEN Mian, HOU Bing, et al. Drilling fluid loss model and loss dynamic behavior in fractured formations[J]. Petroleum Exploration and Development, 2014, 41(1): 95–101.
    [19]
    贾利春,陈勉,张伟,等. 诱导裂缝性井漏止裂封堵机理分析[J]. 钻井液与完井液,2013,30(5):82–85.

    JIA Lichun, CHEN Mian, ZHANG Wei, et al. Plugging mechanism of induced fracture for controlling lost circulation[J]. Drilling Fluid & Completion Fluid, 2013, 30(5): 82–85.
    [20]
    李大奇,刘四海,林永学,等. 裂缝网络地层钻井液漏失模拟[J]. 钻井液与完井液,2017,34(2):45–50.

    LI Daqi, LIU Sihai, LIN Yongxue, et al. Simulation of mud loss in formations with fracture network[J]. Drilling Fluid & Completion Fluid, 2017, 34(2): 45–50.
    [21]
    李大奇,曾义金,刘四海,等. 基于分形理论的粗糙裂缝钻井液漏失模型研究[J]. 石油钻探技术,2017,45(4):46–52.

    LI Daqi, ZENG Yijin, LIU Sihai, et al. Drilling fluid loss model in rough fractures based on fractal theory[J]. Petroleum Drilling Techniques, 2017, 45(4): 46–52.
    [22]
    吕开河,王晨烨,雷少飞,等. 裂缝性地层钻井液漏失规律及堵漏对策[J]. 中国石油大学学报(自然科学版),2022,46(2):85–93.

    LYU Kaihe, WANG Chenye, LEI Shaofei, et al. Dynamic behavior and mitigation methods for drilling fluid loss in fractured formations[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(2): 85–93.
    [23]
    王明波,郭亚亮,方明君,等. 裂缝性地层钻井液漏失动力学模拟及规律[J]. 石油学报,2017,38(5):597–606.

    WANG Mingbo, GUO Yaliang, FANG Mingjun, et al. Dynamics simulation and laws of drilling fluid loss in fractured formations[J]. Acta Petrolei Sinica, 2017, 38(5): 597–606.
    [24]
    曹海涛. 基于分形理论裂缝面形态特征及渗流特性研究[D]. 成都: 成都理工大学, 2016.

    CAO Haitao. The study of fracture surface morphology characteristic and seepage characteristic of fracture based on fractal theory[D]. Chengdu: Chengdu University of Technology, 2016.
    [25]
    宋晓晨,徐卫亚. 裂隙岩体渗流模拟的三维离散裂隙网络数值模型 (Ⅰ):裂隙网络的随机生成[J]. 岩石力学与工程学报,2004,23(12):2015–2020.

    SONG Xiaochen, XU Weiya. Numerical model of three-dimensional discrete fracture network for seepage in fractured rocks (I): Generation of fracture network[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(12): 2015–2020.
    [26]
    LI Sanbai, FIROOZABADI A, ZHANG Dongxiao. Hydromechanical modeling of nonplanar three-dimensional fracture propagation using an iteratively coupled approach[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(8): e2020JB020115. doi: 10.1029/2020JB020115
    [27]
    ZHENG Shuai, LI Sanbai, ZHANG Dongxiao. Fluid and heat flow in enhanced geothermal systems considering fracture geometrical and topological complexities: an extended embedded discrete fracture model[J]. Renewable Energy, 2021, 179: 163–178. doi: 10.1016/j.renene.2021.06.127
    [28]
    AUSLOOS M, BERMAN D H. A multivariate Weierstrass–Mandelbrot function[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1985, 400(1819): 331–350. doi: 10.1098/rspa.1985.0083
    [29]
    KASSIS S, SONDERGELD C H. Fracture permeability of gas shale: effects of roughness, fracture offset, proppant, and effective stress[R]. SPE 131376, 2010.
    [30]
    KOMVOPOULOS K, YE N. Three-dimensional contact analysis of elastic-plastic layered media with fractal surface topographies[J]. Journal of Tribology, 2001, 123(3): 632–640. doi: 10.1115/1.1327583
    [31]
    BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155–164. doi: 10.1063/1.1712886
    [32]
    BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [33]
    MOËS N, CLOIREC M, CARTRAUD P, et al. A computational approach to handle complex microstructure geometries[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28/29/30): 3163–3177.
    [34]
    XIA Yang, JIN Yan, CHEN Mian, et al. An enriched approach for modeling multiscale discrete-fracture/matrix interaction for unconventional-reservoir simulations[J]. SPE Journal, 2019, 24(1): 349–374. doi: 10.2118/194012-PA
  • Related Articles

    [1]WANG Zhiyuan, LIU Hui, SUN Baojiang, LIU Hongtao, LOU Wenqiang. Numerical Study on Drilling Fluid Leakage under Fluid-Solid Coupling in Deep Fractured Gas Reservoir[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025031
    [2]CUI Zhuang, HOU Bing. A Numerical Simulation for Damage Mechanical Behavior of Brazilian Splitting Test of Deep Shales[J]. Petroleum Drilling Techniques, 2024, 52(2): 218-228. DOI: 10.11911/syztjs.2024032
    [3]ZHANG Yiqun, HU Xiao, WU Xiaoya, LI Gensheng, TIAN Shouceng, ZHAO Shuai. Experimental and Numerical Simulation Study of Natural Gas Hydrate Erosion by Swirling Jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24-33. DOI: 10.11911/syztjs.2022046
    [4]XIAN Yuxi, CHEN Chaofeng, FENG Meng, HAO Youzhi. Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
    [5]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [6]Chen Xiuping, Zou Deyong, Li Dongjie, Lou Erbiao. Numerical Simulation Study on the Anti-Balling Performance of PDC Drill Bits[J]. Petroleum Drilling Techniques, 2015, 43(6): 108-113. DOI: 10.11911/syztjs.201506020
    [7]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
    [8]Shen Haichao, Cheng Yuanfang, Hu Xiaoqing. Numerical Simulation of Near Wellbore Reservoir Stability during Gas Hydrate Production by Depressurization[J]. Petroleum Drilling Techniques, 2012, 40(2): 76-81. DOI: 10.3969/j.issn.1001-0890.2012.02.015
    [9]Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005
    [10]Li Chunying, Wu Xiaodong. Numerical Simulation of Remaining Oil Distribution in Cyclothem[J]. Petroleum Drilling Techniques, 2012, 40(1): 88-91. DOI: 10.3969/j.issn.1001-0890.2012.01.018
  • Cited by

    Periodical cited type(3)

    1. 杨万有,郑春峰,李昂,王磊. 海上电泵结蜡井热循环洗井工艺参数优化设计. 西南石油大学学报(自然科学版). 2019(01): 129-136 .
    2. 朱广海,刘章聪,熊旭东,宋洵成,王军恒,翁博. 电加热稠油热采井筒温度场数值计算方法. 石油钻探技术. 2019(05): 110-115 . 本站查看
    3. 沈园园. 南堡潜山高温油气藏井下循环温度的数值模拟. 断块油气田. 2017(04): 570-573 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (231) PDF downloads (112) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return