LI Daqi, ZENG Yijin, LIU Sihai, KANG Yili. Drilling Fluid Loss Model in Rough Fractures Based on Fractal Theory[J]. Petroleum Drilling Techniques, 2017, 45(4): 46-52. DOI: 10.11911/syztjs.201704008
Citation: LI Daqi, ZENG Yijin, LIU Sihai, KANG Yili. Drilling Fluid Loss Model in Rough Fractures Based on Fractal Theory[J]. Petroleum Drilling Techniques, 2017, 45(4): 46-52. DOI: 10.11911/syztjs.201704008

Drilling Fluid Loss Model in Rough Fractures Based on Fractal Theory

More Information
  • Received Date: February 22, 2017
  • Revised Date: June 20, 2017
  • Conventional lost-circulation models failed to consider impacts of fracture roughness on losses of drilling fluids.Consequently,patterns of lost circulation in rough fractures were not fully understood,whereas fracture widths derived through inversion were usually characterized by huge errors.In the concerned study,a two-dimensional model for rough fractures was established based on fractal theory.With non-Newtonian rheological behaviors of the drilling fluid were highlighted by using the Herschel-Buckley mode,and with non-linear deformation features highlighted by index equations,a model for losses of drilling fluid could be established.Midpoint displacement method was used to derive numerical solution of the equation to determine the impacts of mesh sizes,number of fractal dimensions and standard deviation on drilling fluid loss rates and cumulative loss.Research results showed when sizes of mesh grids were large enough,numerical simulation might generate results with higher reliability.Loss rates and the cumulative loss might decrease significantly with increases in the standard deviation.The effect of the number of fractal dimensions on fluid loss behavior was related to contact of the two fracture surfaces.Minor effects on the loss could be observed when the contact rate was zero,and the impacts might be enhanced with increases in contact areas.Research results showed the newly established lost-circulation model might provide theoretical references for identification of lost circulation mechanisms and to determine the widths of fractures through inversion.
  • [1]
    徐同台,刘玉杰,申威,等.钻井工程防漏堵漏技术[M].北京:石油工业出版社,1997:1-4. XU Tongtai,LIU Yujie,SHEN Wei,et al.Technology of lost circulation prevention and control during drilling engineering[M].Beijing:Petroleum Industry Press,1997:1-4.
    [2]
    刘金华,刘四海,龙大清,等.明1井交联成膜与化学固结承压堵漏技术[J].石油钻探技术,2017,45(2):54-60. LIU Jinhua,LIU Sihai,LONG Daqing,et al.Strengthening plugging operations by combining cross-linked film and chemical consolidation in Well Ming-1[J].Petroleum Drilling Techniques,2017,45(2):54-60.
    [3]
    金军斌.塔里木盆地顺北区块超深井火成岩钻井液技术[J].石油钻探技术,2016,44(6):17-23. JIN Junbin.Drilling fluid technology for igneous rocks in ultra-deep wells in the Shunbei Area,Tarim Basin[J].Petroleum Drilling Techniques,2016,44(6):17-23.
    [4]
    杨力.彭水区块页岩气水平井防漏堵漏技术探讨[J].石油钻探技术,2013,41(5):16-20. YANG Li.Leak prevention and plugging techniques for shale gas horizontal wells in Pengshui Block[J].Petroleum Drilling Techniques,2013,41(5):16-20.
    [5]
    王业众,康毅力,游利军,等.裂缝性储层漏失机理及控制技术研究进展[J].钻井液与完井液,2007,24(4):74-77. WANG Yezhong,KANG Yili,YOU Lijun,et al.Progresses in mechanism study and control:mud losses to fractured reservoirs[J].Drilling Fluid Completion Fluid,2007,24(4):74-77.
    [6]
    韩子轩,林永学,柴龙,等.裂缝性气藏封缝堵气技术研究[J].钻井液与完井液,2017,34(1):16-22. HAN Zixuan,LIN Yongxue,CHAI Long,et al.Plugging micro-fractures to prevent gas-cut in fractured gas reservoir drilling[J].Drilling Fluid Completion Fluid,2017,34(1):16-22.
    [7]
    李大奇,刘四海,林永学,等.裂缝网络地层钻井液漏失模拟[J].钻井液与完井液,2017,34(2):45-50. LI Daqi,LIU Sihai,LIN Yongxue,et al.Simulation of mud loss in formations with fracture network[J].Drilling Fluid Completion Fluid,2017,34(2):45-50.
    [8]
    LIETARD O,UNWIN T,GUILLOT D,et al.Fracture width LWD and drilling mud/LCM selection guidelines in naturally fractured reservoirs[R].SPE 36832,1996.
    [9]
    SANFILLIPPO F,BRIGNOLI M,SANTARELLI F J,et al.Characterization of conductive fractures while drilling[R].SPE 38177,1997.
    [10]
    李大奇,康毅力,刘修善,等.裂缝性地层钻井液漏失动力学模型研究进展[J].石油钻探技术,2013,41(4):42-47. LI Daqi,KANG Yili,LIU Xiushan,et al.Progress in drilling fluid loss dynamics model for fractured formations[J].Petroleum Drilling Techniques,2013,41(4):42-47.
    [11]
    李松,康毅力,李大奇,等.裂缝性地层H-B流型钻井液漏失流动模型及实验模拟[J].石油钻采工艺,2015,37(6):57-62. LI Song,KANG Yili,LI Daqi,et al.Flow model and experimental simulation for leak-off of H-B flow-pattern drilling fluid in fractured formation[J].Oil Drilling Production Technology,2015,37(6):57-62.
    [12]
    LAVROV A.Newtonian fluid flow from an arbitrarily-oriented fracture into a single sink[J].Acta Mechanica,2006,186(1/2/3/4):55-74.
    [13]
    OZDEMIRTAS M,BABADAGLI T,KURU E.Experimental and numerical investigations of borehole ballooning in rough fractures[J].SPE Drilling Completion,2009,24(2):256-265.
    [14]
    贾利春,陈勉,侯冰,等.裂缝性地层钻井液漏失模型及漏失规律[J].石油勘探与开发,2014, 41(1):95-101. JIA Lichun,CHEN Mian,HOU Bing,et al.Drilling fluid loss model and loss dynamic behavior in fractured formations[J].Petroleum Exploration and Development,2014,41(1):95-101.
    [15]
    BROWN S R.Fluid flow through rock joints:the effect of surface roughness[J].Journal of Geophysical Research,1987,92(B2):1337-1348.
    [16]
    周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004:101-102. ZHOU Zhifang,WANG Jinguo.Fissure medium hydrodynamics[M].Beijing:China Water Power Press,2004:101-102.
    [17]
    PEITGEN H,SAUPE D.The science of fractal images[M].New York:Springer-Verlag,1988:71-133.
    [18]
    鄢捷年.钻井液工艺学[M].东营:石油大学出版社,2001:77-78. YAN Jienian.Drilling fluid technology[M].Dongying:Petroleum University Press,2001:77-78.
  • Related Articles

    [1]DAI Ling, JIANG Renkai, SUN Changwei, PEI Bolin, ZHAO Wei. Water Control through Particle Huff and Puff for Horizontal Wells with Severe Fluid Loss in Fractured-Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 91-97. DOI: 10.11911/syztjs.2024013
    [2]JIN Taiyu. Study on Three-Dimensional Fluid-Solid Coupling Model of Drilling Fluid Leakage in Rough Fracture Network[J]. Petroleum Drilling Techniques, 2024, 52(1): 69-77. DOI: 10.11911/syztjs.2023100
    [3]ZENG Yijin, LI Daqi, CHEN Zengwei, ZHANG Dujie, CUI Yahui, ZHANG Feifei. Loss Analysis and Diagnosis Based on Natural Language Processing and Big Data Analysis[J]. Petroleum Drilling Techniques, 2023, 51(6): 1-11. DOI: 10.11911/syztjs.2023108
    [4]KANG Yili, TIAN Guofeng, YOU Lijun, YAN Xiaopeng, XU Chengyuan. Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033
    [5]LAN Kunxiang, ZHANG Xingguo, AI Zhengqing, YUAN Zhongtao, XU Liqun, LIU Zhongfei. Research on the Rheological Properties of Drilling Fluids in Annular Spacefor Cementing at Low Shear Rates in Kuqa Piedmont[J]. Petroleum Drilling Techniques, 2021, 49(6): 55-61. DOI: 10.11911/syztjs.2021058
    [6]Li Yan. Development and Performance Evaluation of the High Temperature Resistant Polymer Fluid Loss Agent AAS[J]. Petroleum Drilling Techniques, 2015, 43(4): 96-101. DOI: 10.11911/syztjs.201504017
    [7]Zhu Bing, Nie Yuzhi, Qiu Zailei, Wang Haoren, Chen Hongzhuang, Ma Peng. Research on Fluid Loss Additives of AMPS/DMAM/AA in Well Cementing[J]. Petroleum Drilling Techniques, 2014, 42(6): 40-44. DOI: 10.11911/syztjs.201406008
    [8]Zhang Jinkai, Li Gensheng, Huang Zhongwei, Tian Shouceng, Shi Huaizhong. Behavior of Herschel-Bulkely Fluid Flow in Whirl Drill String[J]. Petroleum Drilling Techniques, 2013, 41(5): 82-88. DOI: 10.3969/j.issn.1001-0890.2013.05.016
    [9]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
    [10]Liu Xuepeng, Zhang Mingchang, Ding Shidong, Liu Wei, Wang Xiaojing. Synthesis and Properties of a High-Temperature Grafting Polyvinyl Alcohol Fluid Loss Additive[J]. Petroleum Drilling Techniques, 2012, 40(3): 58-61. DOI: 10.3969/j.issn.1001-0890.2012.03.012
  • Cited by

    Periodical cited type(9)

    1. 赵崇胜,王波,苟波,罗鹏飞,陈国军,巫国全. 深部煤层气油电混驱压裂设备配置与工艺技术. 油气藏评价与开发. 2025(02): 292-299 .
    2. 张国友. 页岩油全电动压裂装备配置与作业技术研究. 石油机械. 2024(03): 102-107 .
    3. 陈万锋. 道路工程中的技术分析及预制混凝土路面板的力学性能分析. 交通科技与管理. 2024(06): 83-85 .
    4. 乔玲茜,王本强,陈雨松,何启越,蔡金赤,续化蕾,江厚顺. 页岩气藏暂堵转向压裂裂缝扩展规律模拟. 断块油气田. 2024(02): 241-245+265 .
    5. 杨亚东,邹龙庆,王一萱,朱静怡,李小刚,熊俊雅. 川南深层页岩气藏压裂裂缝导流能力影响因素分析. 特种油气藏. 2024(05): 162-167 .
    6. 尤璐. 页岩油气压裂作业环境保护技术浅析. 化工安全与环境. 2023(09): 65-68 .
    7. 李方淼. 电动压裂供电技术研究. 石油和化工设备. 2023(08): 129-132 .
    8. 唐瑞欢. 川渝地区页岩气压裂设备发展新方向. 石油机械. 2023(09): 94-100 .
    9. 郭建春,任文希,曾凡辉,罗扬,李宇麟,杜肖泱. 非常规油气井压裂参数智能优化研究进展与发展展望. 石油钻探技术. 2023(05): 1-7+179 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (7616) PDF downloads (6615) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return