LIU Xing, QIU Jian, CHEN Zuo, et al. Calculation method for complex fracture network area of shale fracturing based on octree grid [J]. Petroleum Drilling Techniques, 2024, 52(6):117−125. DOI: 10.11911/syztjs.2024101
Citation: LIU Xing, QIU Jian, CHEN Zuo, et al. Calculation method for complex fracture network area of shale fracturing based on octree grid [J]. Petroleum Drilling Techniques, 2024, 52(6):117−125. DOI: 10.11911/syztjs.2024101

Calculation Method for Complex Fracture Network Area of Shale Fracturing Based on Octree Grid

More Information
  • Received Date: November 29, 2023
  • Revised Date: September 12, 2024
  • Available Online: December 09, 2024
  • Deep shale gas is mainly developed by cutting fracturing technology. However, the fracturing effect evaluation method based on microseismic event monitoring for calculating stimulated reservoir volume (SRV) is only suitable for volume fracturing of shale gas wells in medium and deep formations, and it is not applicable for evaluating the tight cutting fracturing effectiveness of deep shale gas wells. Therefore, a model for estimating the area of complex fracture network based on the octree grid was established to evaluate the effectiveness of tight cutting fracturing in deep shale gas wells by estimating the complex fracture network area. This model decomposes microseismic events into octree grids and a three-dimensional complex fracture network area equivalent model based on the grid equivalent area method was constructed, by which the area of fracture network can be efficiently estimated without reconstructing the fracture network. In order to quantitatively evaluate the calculation error of this model, a set of synthetic microseismic event point generation methods based on the Gaussian mixture model was established. The simulation results show that this method has high calculation efficiency and estimation accuracy. Field application examples show that compared with the traditional SRV evaluation method, the method can more accurately evaluate the effectiveness of tight cutting fracturing in deep shale gas wells.

  • [1]
    陈作,李双明,陈赞,等. 深层页岩气水力裂缝起裂与扩展试验及压裂优化设计[J]. 石油钻探技术,2020,48(3):70–76. doi: 10.11911/syztjs.2020060

    CHEN Zuo, LI Shuangming, CHEN Zan, et al. Hydraulic fracture initiation and extending tests in deep shale gas formations and fracturing design optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70–76. doi: 10.11911/syztjs.2020060
    [2]
    冯发勇,梁志彬,姚昌宇. 东胜气田锦 30 井区变黏压裂液体积压裂技术[J]. 石油钻采工艺,2022,44(6):740–745.

    FENG Fayong, LIANG Zhibin, YAO Changyu. SRV-oriented fracturing with viscosity-variable fracturing fluids in the Jin-30 well district, Dongsheng gas field[J]. Oil Drilling & Production Technology, 2022, 44(6): 740–745.
    [3]
    张矿生,薛小佳,陶亮,等. 页岩油水平井体积压裂缝网波及体积评价新方法及应用[J]. 特种油气藏,2023,30(5):127–134.

    ZHANG Kuangsheng, XUE Xiaojia, TAO Liang, et al. New method for evaluating the volume fracturing fracture network sweep volume in shale oil horizontal wells and its application[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 127–134.
    [4]
    慕立俊,拜杰,齐银,等. 庆城夹层型页岩油地质工程一体化压裂技术[J]. 石油钻探技术,2023,51(5):33–41.

    MU Lijun, BAI Jie, QI Yin, et al. Geological engineering inte-grated fracturing technology for Qingcheng interlayer shale oil [J]. Petroleum Drilling Techniques, 2023, 51(5): 33–41.
    [5]
    胡东风,任岚,李真祥,等. 深层超深层页岩气水平井缝口暂堵压裂的裂缝调控模拟[J]. 天然气工业,2022,42(2):50–58. doi: 10.3787/j.issn.1000-0976.2022.02.006

    HU Dongfeng, REN Lan, LI Zhenxiang, et al. Simulation of fracture control during fracture-opening temporary plugging fracturing of deep/ultra deep shale-gas horizontal wells[J]. Natural Gas Industry, 2022, 42(2): 50–58. doi: 10.3787/j.issn.1000-0976.2022.02.006
    [6]
    GAO Qian, GHASSEMI A. Finite element simulations of 3D planar hydraulic fracture propagation using a coupled hydro-mechanical interface element[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(15): 1999–2024. doi: 10.1002/nag.3116
    [7]
    DAHI-TALEGHANI A, OLSON J E. Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575–581. doi: 10.2118/124884-PA
    [8]
    OLSON J E. Multi-fracture propagation modeling: applications to hydraulic fracturing in shales and tight gas sands[R]. ARMA 08-327, 2008.
    [9]
    ZHANG Fengshou, DAMJANAC B, MAXWELL S. Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling[J]. Rock Mechanics and Rock Engineering, 2019, 52(12): 5137–5160. doi: 10.1007/s00603-019-01851-3
    [10]
    ZHUANG Xiaoying, ZHOU Shuwei, SHENG Mao, et al. On the hydraulic fracturing in naturally-layered porous media using the phase field method[J]. Engineering Geology, 2020, 266: 105306. doi: 10.1016/j.enggeo.2019.105306
    [11]
    FISHER M K, HEINZE J R, HARRIS C D, et al. Optimizing horizontal completion techniques in the Barnett Shale using microseismic fracture mapping[R]. SPE 90051, 2004.
    [12]
    HUGOT A, DULAC J C, GRINGARTEN E, et al. Connecting the dots: microseismic-derived connectivity for estimating volumes in low-permeability reservoirs[R]. URTEC 2153402, 2015.
    [13]
    WU Yonghui, CHENG Linsong, KILLOUGH J, et al. Integrated characterization of the fracture network in fractured shale gas reservoir: stochastic fracture modeling, simulation and assisted history matching[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108886. doi: 10.1016/j.petrol.2021.108886
    [14]
    ZHOU Zhiwei, SU Yuliang, WANG Wendong, et al. Integration of microseismic and well production data for fracture network calibration with an L-system and rate transient analysis[J]. Journal of Unconventional Oil and Gas Resources, 2016, 15: 113–121. doi: 10.1016/j.juogr.2016.07.001
    [15]
    YU Xin, RUTLEDGE J, LEANEY S, et al. Integration of microseismic data and an unconventional fracture modeling tool to generate the hydraulically induced fracture network: a case study from the Cardium Formation, West Central Alberta, Canada[R]. URTEC 2154594, 2015.
    [16]
    MCCLURE M W, BABAZADEH M, SHIOZAWA S, et al. Fully coupled hydromechanical simulation of hydraulic fracturing in 3D discrete-fracture networks[J]. SPE Journal, 2016, 21(4): 1302–1320. doi: 10.2118/173354-PA
    [17]
    WENG X, KRESSE O, COHEN C, et al. Modeling of hydraulic-fracture-network propagation in a naturally fractured formation[J]. SPE Production & Operations, 2011, 26(4): 368–380.
    [18]
    MEAGHER D. Geometric modeling using octree encoding[J]. Computer Graphics and Image Processing, 1982, 19(2): 129–147. doi: 10.1016/0146-664X(82)90104-6
    [19]
    SAMET H. Foundations of multidimensional and metric data structures[M]. San Francisco: Morgan Kaufmann Publishers Inc. , 2006.
    [20]
    PULLI K, DUCHAMP T, HOPPE H, et al. Robust meshes from multiple range maps[C]//Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No. 97TB100134). Piscataway, NJ: IEEE Press, 1997: 205-211.
    [21]
    AYALA D, BRUNET P, JUAN R, et al. Object representation by means of nonminimal division quadtrees and octrees[J]. ACM Transactions on Graphics (TOG), 1985, 4(1): 41–59. doi: 10.1145/3973.3975
    [22]
    FADAKAR ALGHALANDIS Y. ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications[J]. Computers & Geosciences, 2017, 102: 1–11.
    [23]
    LIU Xing, JIN Yan, LIN Botao, et al. An integrated 3D fracture network reconstruction method based on microseismic events[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104182. doi: 10.1016/j.jngse.2021.104182
  • Related Articles

    [1]ZHANG Guilin. Modification of the Relative Time Method Calculation Formula for Oil and Gas Up-Channeling Velocity[J]. Petroleum Drilling Techniques, 2024, 52(1): 32-37. DOI: 10.11911/syztjs.2023102
    [2]LIU Hui, DING Xinlu, ZHANG Shijie, FANG Yungui, HAO Xiaobo, ZHENG Weige. Integrated Calculation Method of Pressure and Formation Parameters in Gas Injection Process of Underground Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(6): 64-71. DOI: 10.11911/syztjs.2022047
    [3]CHEN Zhongshuai, WU Zhonghua, SI Yinghui. Development and Testing of a Graphene-Modified Sponge Coring Tool[J]. Petroleum Drilling Techniques, 2020, 48(6): 71-75. DOI: 10.11911/syztjs.2020111
    [4]MA Mingxue. A New Method for Shale Gas Density Calculation Based on SRK Equation of State[J]. Petroleum Drilling Techniques, 2016, 44(6): 99-103. DOI: 10.11911/syztjs.201606017
    [5]LI Cui, GAO Deli, LIU Qinglong, KONG Xue. A Method of Calculating of Avoiding Collisions with Adjacent Wells Using Electromagnetic Ranging Surveying while Drilling Tools[J]. Petroleum Drilling Techniques, 2016, 44(5): 52-59. DOI: 10.11911/syztjs.201605009
    [6]Li Longlong, Wu Minglu, Yao Jun, Li Yang, Li Xiaoxue. Calculation Method of the Productivity of Partially Perforated Vertical Well[J]. Petroleum Drilling Techniques, 2014, 42(3): 80-89. DOI: 10.3969/j.issn.1001-0890.2014.03.016
    [7]Li Hao, Sun Baojiang, Gao Yonghai, Wang Jintang, Wang Ning. Design and Calculation of Hydraulic Parameters for Controlling Mud Cap in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 13-18. DOI: 10.3969/j.issn.1001-0890.2013.03.003
    [8]Diao Binbin, Gao Deli. Calculation Method of Adjacent Well Oriented Separation Factors[J]. Petroleum Drilling Techniques, 2012, 40(1): 22-27. DOI: 10.3969/j.issn.1001-0890.2012.01.005
  • Cited by

    Periodical cited type(62)

    1. 梅熠轩,高成,刘旭辉,孙巧雷,吴何洪. 潜孔冲击器钎头合金齿装配过盈量分析. 科学技术与工程. 2024(01): 177-182 .
    2. 赵阳,朱勇,高强,曹凯. 旋冲钻进系统控制策略研究现状与发展趋势. 机床与液压. 2024(04): 175-184 .
    3. 李根生,穆总结,田守嶒,黄中伟,孙照伟. 冲击破岩钻井提速技术研究现状与发展建议. 新疆石油天然气. 2024(01): 1-12 .
    4. 江泽才,张强,武进虎,纪昌桂. 基于运动学模型的轴扭冲击器仿真分析. 工程机械. 2024(04): 30-35+8 .
    5. 李云龙,杨海东,杨骏师. 莺琼盆地塑性泥岩地层钻井提速技术. 天然气勘探与开发. 2024(02): 81-88 .
    6. 刘永旺,李坤,管志川,毕琛超,霍韵如,于濮玮. 降低井底岩石抗钻能力的钻速提高方法研究及钻头设计. 石油钻探技术. 2024(03): 11-20 . 本站查看
    7. 曹继飞,邹德永,李成,王旱祥,车家琪,张伟强,黄哲. 基于仿真的复合冲击破岩流固热耦合场分析. 石油机械. 2024(08): 61-69 .
    8. 祝效华,刘伟吉,石昌帅,周伟. 重载冲击破岩提速机理实验. 石油学报. 2024(10): 1529-1537 .
    9. 李术才,李利平,孙子正,刘知辉,李梦天,潘东东,屠文锋. 超长定向钻注装备关键技术分析及发展趋势. 岩土力学. 2023(01): 1-30 .
    10. 张毅,张润畦. ?127型水力振荡减摩装置的研制及特性分析. 钻探工程. 2023(01): 84-93 .
    11. 杜明锋,李乾,王泽,蔡晓杰,张凯. 东海L区块螺杆马达搭配复合冲击器提速技术研究与应用. 海洋石油. 2023(01): 68-72+77 .
    12. 吴寒,张云飞. 双冲击锤复合冲击器在东海某区块探井的提速应用. 科技风. 2023(20): 68-70 .
    13. 祝效华,李瑞,刘伟吉,李枝林,陆灯云. 深层页岩气水平井高效破岩提速技术发展现状. 西南石油大学学报(自然科学版). 2023(04): 1-18 .
    14. 孙乾坤. 东海X区块钻井提速研究与应用. 石油地质与工程. 2023(04): 104-107+112 .
    15. 秦承帅,孙洪斌,李利平,刘学港,刘知辉,冯春,孙子正. 复合冲击作用下PDC钻齿破岩过程连续-非连续数值模拟研究. 煤田地质与勘探. 2023(09): 109-120 .
    16. 邓银江,郭正伟,魏秦文,程泽正,向荣洵. PDC钻头复合冲击钻进动力学研究. 石油矿场机械. 2023(05): 12-20 .
    17. 王勇军,刘刚,佟铮,赵长亮,郑宇轩,冯守涛. 旋冲螺杆钻具在硬岩地热钻探中的应用研究. 钻探工程. 2023(05): 146-152 .
    18. 齐悦,柳贡慧,李军,查春青,田玉栋,李玉梅. 基于单齿多维度冲击破岩机理仿真研究. 石油机械. 2023(12): 1-7 .
    19. Yan Xi,Hao-Yu Wang,Chun-Qing Zha,Jun Li,Gong-Hui Liu,Bo-Yun Guo. Numerical simulation of rock-breaking and influence laws of dynamic load parameters during axial-torsional coupled impact drilling with a single PDC cutter. Petroleum Science. 2023(03): 1806-1827 .
    20. 邓银江,郭正伟,魏秦文,王圣林. 复合冲击破岩钻井提速工具研究. 重庆科技学院学报(自然科学版). 2022(02): 111-116 .
    21. 赵金成,陈杰,陈立伟,刘禹铭,柴龙顺,蒋畅. 国内外扭力冲击器的研究现状及展望. 机械工程师. 2022(05): 83-85 .
    22. 王四一. 冲击载荷侵入软岩特征分析. 煤矿安全. 2022(08): 62-68 .
    23. 毛良杰,马茂原,刘立鹏,张伟,陈春宇. 扭力冲击器对钻柱黏滑振动的影响分析. 断块油气田. 2022(04): 545-551 .
    24. 蔡灿,谭政博,玄令超,杨迎新,任海涛,蒲治成,张沛,谢松. 分离式冲击-刮切复合钻头破岩机理及钻进破岩研究. 振动与冲击. 2022(16): 232-241 .
    25. 谢鑫,窦正道,付成林,王媛媛,杨小敏. 江苏油田花页3HF井高效开发技术集成. 石油石化节能. 2022(12): 26-30 .
    26. 王建龙,柳鹤,于琛,郑锋,李亚锋,刘烁. 多功能振荡旋冲螺杆钻具研制与应用. 西部探矿工程. 2022(12): 49-52+55 .
    27. 赵研,张丛珊,高科,张增增,赵大军,李家晟,吕晓姝,平天才. 超声波辅助PDC切削齿振动破岩仿真分析. 钻探工程. 2021(04): 11-20 .
    28. 薛亮,张伟国,肖夏,王堂青,魏裕森. 新型钻井提速技术在南海东部古近系地层应用. 海洋石油. 2021(01): 73-77 .
    29. 赵建军,赵晨熙,崔晓杰,胡群爱. 减震稳扭旋冲钻井提速工具可变节流口特性分析. 机械科学与技术. 2021(04): 592-597 .
    30. 车继勇,谯正武,李明娜. 井下冲击钻井工具模拟试验装置研制. 石油矿场机械. 2021(03): 80-86 .
    31. 张文平,王恒,孙德兴,黄河淳,尹慧博,赵建军,崔晓杰. 近钻头冲击器对定向钻进中造斜率的影响规律. 石油机械. 2021(07): 45-52 .
    32. 蔡灿,张沛,孙明光,杨迎新,谢松,蒲治成,杨显鹏,高超,谭政博. 油气钻井中的分离式冲击-切削复合破岩机制研究. 岩土力学. 2021(09): 2535-2544 .
    33. 王玉玺,纪博,刘德伟,李相勇,李博,李欢欢. 自研提速工具在大庆深层现场应用与认识. 西部探矿工程. 2021(11): 46-48 .
    34. 杜明锋. 复合冲击器提速机理及其在东海某区块探井的应用. 中国石油和化工标准与质量. 2021(20): 148-149 .
    35. 刘伟吉,曾义金,祝效华,丁士东. 单齿复合冲击切削破岩机制及其与扭转冲击的对比. 中国石油大学学报(自然科学版). 2020(03): 74-80 .
    36. 罗恒荣,崔晓杰,谭勇,黎有炎,赵建军. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验. 石油钻探技术. 2020(03): 58-62 . 本站查看
    37. 穆总结,李根生,黄中伟,杜彤,史怀忠,田守嶒. 振动冲击钻井提速技术现状及发展趋势. 石油钻采工艺. 2020(03): 253-260 .
    38. 尹慧博. 强力液动射流式冲击器在彭州4-2D井的应用. 石油化工应用. 2020(09): 35-39 .
    39. 尹慧博,索忠伟,李博东,涂玉林. 沙特HWY区块HWY-116井提速技术. 石油钻探技术. 2020(05): 34-38 . 本站查看
    40. 刘书斌,倪红坚,张恒. 轴扭复合冲击工具的研制与应用. 石油钻探技术. 2020(05): 69-76 . 本站查看
    41. 尹慧博. 一种硬地层高效破岩技术应用分析. 科技和产业. 2020(10): 219-222 .
    42. 张海山,宫吉泽. 东海深部致密储层主要钻井技术及其应用. 探矿工程(岩土钻掘工程). 2019(01): 39-44 .
    43. 路保平,丁士东,何龙,庞伟. 低渗透油气藏高效开发钻完井技术研究主要进展. 石油钻探技术. 2019(01): 1-7 . 本站查看
    44. 王建龙,于志强,王波,郭菲,柳鹤,刘轩,赵虹. 冲击类钻井提速工具专用PDC钻头设计与试验. 石油矿场机械. 2019(03): 19-23 .
    45. 金雪萌,黄宇渊,袁钟涛,董明凯,姜旭. 高效破岩新方法研究进展及其应用前景分析. 石油化工应用. 2019(05): 1-6 .
    46. 汪伟,柳贡慧,李军,查春青,黄涛. 复合冲击钻井工具结构设计与运动特性分析. 石油机械. 2019(07): 24-29 .
    47. 苏建,袁则名,和鹏飞,宋瑞,吴义标. HPG复合冲击钻井提速工具在渤海油田的应用. 海洋工程装备与技术. 2019(01): 457-464 .
    48. 李相勇. 复合冲击钻井工具在深部难钻地层的应用. 西部探矿工程. 2019(08): 70-72 .
    49. 唐亮,杨发磊,赵洪学,李晨光,程涛,单祥斌. 轴向水力振荡器在WA115-1井中的应用. 内蒙古石油化工. 2019(06): 29-30 .
    50. 李玉梅,张涛,苏中,于丽维,刘建明. 复合冲击频率配合特性模拟研究. 石油机械. 2019(09): 30-36 .
    51. 李玉梅,于丽维,张涛,苏中,刘建明. 复合冲击钻井立体破岩特性模拟研究. 系统仿真学报. 2019(11): 2471-2476 .
    52. 付传红,陈志强,张代明. 新型减振增压装置的结构设计与工作特性分析. 石油机械. 2018(04): 24-29 .
    53. 汪为涛. 非均质地层锥形辅助切削齿PDC钻头设计与试验. 石油钻探技术. 2018(02): 58-62 . 本站查看
    54. 黄家根,汪海阁,纪国栋,赵飞,明瑞卿,郝亚龙. 超声波高频旋冲钻井技术破岩机理研究. 石油钻探技术. 2018(04): 23-29 . 本站查看
    55. 何选蓬,程天辉,王学龙,李义强,李瑞强,肖飞. 塔里木地区复合冲击器钻井提速应用与实践. 钻采工艺. 2018(01): 107-109 .
    56. 王清涛. 高效破岩钻井技术研究. 当代化工研究. 2018(04): 43-44 .
    57. 潘军,刘卫东,张金成. 涪陵页岩气田钻井工程技术进展与发展建议. 石油钻探技术. 2018(04): 9-15 . 本站查看
    58. 闫炎,管志川,玄令超,呼怀刚,庄立. 复合冲击条件下PDC钻头破岩效率试验研究. 石油钻探技术. 2017(06): 24-30 . 本站查看
    59. 刘秀美,李小洋,孙建华. 地质钻探液动冲击回转钻进技术再(新)认识. 探矿工程(岩土钻掘工程). 2017(04): 31-35 .
    60. 程天辉,何选蓬,李瑞亮,石振兴. 塔里木昆仑山前昆玉1井钻井提速实践. 钻采工艺. 2017(05): 115-116 .
    61. 查春青,柳贡慧,李军,李玉梅,席岩,连威. 复合冲击钻具的研制及现场试验. 石油钻探技术. 2017(01): 57-61 . 本站查看
    62. 查春青,柳贡慧,李军,李玉梅,席岩. 复合冲击破岩钻井新技术提速机理研究. 石油钻探技术. 2017(02): 20-24 . 本站查看

    Other cited types(28)

Catalog

    Article Metrics

    Article views (50) PDF downloads (13) Cited by(90)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return