Citation: | WU Bailie, PENG Chengyong, WU Guang'ai, et al. Effect of fracability index on fracture propagation: A case study of LF Oilfield in South China Sea [J]. Petroleum Drilling Techniques,2023, 51(3):105-112. DOI: 10.11911/syztjs.2023062 |
The South China Sea is rich in deep Paleogene oil and gas resources. However, due to the poor formation properties and strong heterogeneity of reservoirs, hydraulic fracturing is needed to realize commercial exploitation. In order to explore the effect of the fracability index on fracture propagation, the rock brittleness and mechanical characteristics of reservoirs in LF Oilfield in the South China Sea were comprehensively studied, and the fracability index calculation model suitable for the LF Oilfield in the South China Sea was established. The fracability indexes of the three sublayers of the Wenchang Formation in the target layer in LF Oilfield in the South China Sea were determined to be 0.75, 0.45, and 0.92 by the model, respectively. Outcrop rock samples with different fracability indexes of LF Oilfield in the South China Sea were selected, and the physical simulation test of hydraulic fracturing was carried out by using the physical simulation test device of true triaxial hydraulic fracturing. The test results show that the artificial fractures in the three sublayers of the Wenchang Formation in the target layer are easy to initiate at the position where bedding and natural fractures develop, but they do not initiate simultaneously at each perforation. As the fracability index is higher, complex fracture morphology will be more likely to form. The research results have important guiding significance for evaluating the fracability of low-porosity and low-permeability offshore oil and gas reservoirs, selecting the location of sweet spots, and optimizing the fracturing scheme.
[1] |
吴百烈,杨凯,程宇雄,等. 南海低渗透储层支撑剂导流能力试验研究[J]. 石油钻探技术,2021,49(6):86–92.
WU Bailie, YANG Kai, CHENG Yuxiong, et al. Experimental study of proppant conductivity in low permeability reservoirs in the South China Sea[J]. Petroleum Drilling Techniques, 2021, 49(6): 86–92.
|
[2] |
周立宏,刘学伟,付大其,等. 陆相页岩油岩石可压裂性影响因素评价与应用:以沧东凹陷孔二段为例[J]. 中国石油勘探,2019,24(5):670–678.
ZHOU Lihong, LIU Xuewei, FU Daqi, et al. Evaluation and application of influencing factors on the fracturability of continental shale oil reservoir: a case study of Kong 2 Member in Cangdong Sag[J]. China Petroleum Exploration, 2019, 24(5): 670–678.
|
[3] |
HAJIABDOLMAJID V, KAISER P. Brittleness of rock and stability assessment in hard rock tunneling[J]. Tunnelling and Underground Space Technology, 2003, 18(1): 35–48. doi: 10.1016/S0886-7798(02)00100-1
|
[4] |
ALTINDAG R. Assessment of some brittleness indexes in rock-drilling efficiency[J]. Rock Mechanics and Rock Engineering, 2010, 43(3): 361–370. doi: 10.1007/s00603-009-0057-x
|
[5] |
张欣, 尚锁贵, 张国强, 等.基于多资料的砂砾岩储层有效性精细评价[J]. 石油钻采工艺, 2018, 40(增刊1): 70-72.
ZHANG Xin, SHANG Suogui, ZHANG Guoqiang, et al. Fine evaluation on the effectiveness of glutenite reservoirs based on diverse data[J]. Oil Drilling & Production Technology, 2018, 40(supplement1): 70-72.
|
[6] |
赖富强,冷寒冰,龚大建,等. 综合矿物组分和弹性力学参数的页岩脆性评价方法[J]. 断块油气田,2019,26(2):168–171.
LLAI Fuqiang,LENG Hanbing,GONG Dajian,et al. Evaluation of shale brittleness based on mineral compositions and elastic mechanics parameters[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 168–171.
|
[7] |
刘尧文,卞晓冰,李双明,等. 基于应力反演的页岩可压性评价方法[J]. 石油钻探技术,2022,50(1):82–88.
LIU Yaowen, BIAN Xiaobing, LI Shuangming, et al. An evaluation method of shale fracability based on stress inversion [J]. Petroleum Drilling Techniques, 2022, 50(1): 82–88.
|
[8] |
CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al. The relationship between fracture complexity, reservoir properties, and fracture-treatment design[J]. SPE Production & Operations, 2010, 25(4): 438–452.
|
[9] |
RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[R]. SPE 115258, 2008.
|
[10] |
JIN Xiaochun, SHAH S N, ROEGIERS J C, et al. An integrated petrophysics and geomechanics approach for fracability evaluation in shale reservoirs[J]. SPE Journal, 2015, 20(3): 518–526. doi: 10.2118/168589-PA
|
[11] |
蒋廷学,卞晓冰,苏瑗,等. 页岩可压性指数评价新方法及应用[J]. 石油钻探技术,2014,42(5):16–20.
JIANG Tingxue,BIAN Xiaobing,SU Yuan, et al. A new method for evaluating shale fracability index and its application[J]. Petroleum Drilling Techniques, 2014, 42(5): 16–20.
|
[12] |
廖东良,肖立志,张元春. 基于矿物组分与断裂韧度的页岩地层脆性指数评价模型[J]. 石油钻探技术,2014,42(4):37–41.
LIAO Dongliang, XIAO Lizhi , ZHANG Yuanchun. Evaluation model for shale brittleness index based on mineral content and fracture toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37–41.
|
[13] |
刘玉章,修乃岭,丁云宏,等. 页岩储层水力裂缝网络多因素耦合分析[J]. 天然气工业,2015,35(1):61–66.
LIU Yuzhang, XIU Nailing, DING Yunhong, et al. Multi-factor coupling of hydraulic fracture network in a shale gas reservoir[J]. Natural Gas Industry, 2015, 35(1): 61–66.
|
[14] |
LI Jinbu, WANG Min, LU Shuangfang, et al. A new method for predicting sweet spots of shale oil using conventional well logs[J]. Marine and Petroleum Geology, 2020, 113: 104097. doi: 10.1016/j.marpetgeo.2019.104097
|
[15] |
吕照,刘叶轩,陈希,等. 页岩油储层可压性分析及指数预测[J]. 断块油气田,2021,28(6):739–744.
LYU Zhao, LIU Yexuan, CHEN Xi, et al. The fracability analysis and index prediction of shale oil reservoir[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 739–744.
|
[16] |
赖富强,罗涵,覃栋优,等. 基于层次分析法的页岩气储层可压裂性评价研究[J]. 特种油气藏,2018,25(3):154–159.
LAI Fuqiang, LUO Han, QIN Dongyou, et al. Crushability evaluation of shale gas reservoir based on analytic hierarchy process[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 154–159.
|
[17] |
郭建春,赵志红,路千里,等. 深层页岩缝网压裂关键力学理论研究进展[J]. 天然气工业,2021,41(1):102–117.
GUO Jianchun, ZHAO Zhihong, LU Qianli, et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry, 2021, 41(1): 102–117.
|
[18] |
MARTIN C D. Brittle failure of rock materials: test results and constitutive models[J]. Canadian Geotechnical Journal, 1996, 33(2): 378. doi: 10.1139/t96-901
|
[19] |
俞然刚,张尹,郑彬涛,等. 射孔相位及地应力对薄互层起裂压力及裂缝扩展影响的实验研究[J]. 钻井液与完井液,2020,37(1).
YU Rangang, ZHANG Yin, ZHENG Bintao, et al. Experimental study on the effects of perforation phasing on fracturing pressure and fracture propagation of thin interbeds[J]. Drilling Fluid & Completion Fluid, 2020, 37(1).
|
[20] |
侯振坤,杨春和,王磊,等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学,2016,37(2):407–414.
HOU Zhenkun, YANG Chunhe, WANG Lei, et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics, 2016, 37(2): 407–414.
|
[21] |
ZHAO Zhiheng, LI Xiao, HE Jianming, et al. Investigation of fracture propagation characteristics caused by hydraulic fracturing in naturally fractured continental shale[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 276–283. doi: 10.1016/j.jngse.2018.02.022
|
[22] |
李成嵩,李社坤,范明涛,等. 水平井压裂过程中固井界面裂缝的扩展规律[J]. 钻井液与完井液,2022,39(6):761–766.
LI Chengsong, LI Shekun, FAN Mingtao, et al. Rule of propagation of fractures through the bonding interfaces of cement sheath in horizontal well fracturing[J]. Drilling Fluid & Completion Fluid, 2022, 39(6): 761–766.
|
[23] |
崔壮,侯冰,付世豪,等. 页岩油致密储层一体化压裂裂缝穿层扩展特征[J]. 断块油气田,2022,29(1):111–117.
CUI Zhuang,HOU Bing,FU Shihao,et al. Fractures cross-layer propagation characteristics of integrated fracturing in shale oil tight reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 111–117.
|
[24] |
孟勇,贾庆升,张潦源,等. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术,2021,49(4).
MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, et al. Research on interlayer interference and the fracture propagation law of shale oil reservoirs in the Dongying Sag [J]. Petroleum Drilling Techniques, 2021, 49(4).
|
[25] |
袁青松,朱德胜,汪超,等. 南华北盆地海陆过渡相煤系页岩地质特征及可压性分析:以中牟区块太原组为例[J]. 河南理工大学学报(自然科学版),2023,42(1):62–70.
YUAN Qingsong, ZHU Desheng, WANG Chao, et al. Geological characteristics and fracability analysis of marine-continental transitional facies coal measures shale in southern North China basin: A case of Taiyuan Formation, Zhongmu Block[J]. Journal of Henan Polytechnic University(Natural Science), 2023, 42(1): 62–70.
|
[26] |
AWAJI H,SATO S. Combined mode fracture toughness measurement by the disk test[J]. Journal of Engineering Materials & Technology Transactions of the Asme, 1978, 100(2): 175–182.
|
[27] |
吴海波,董守华,张平松,等. 基于超声波测试的煤样脆性指数计算与分析[J]. 地球物理学进展,2021,36(3):1138–1144.
WU Haibo, DONG Shouhua, ZHANG Pingsong, et al. Brittleness index calculation and analysis for coal samples based on ultrasonic test data[J]. Progress in Geophysics, 2021, 36(3): 1138–1144.
|
[28] |
张平,夏晓敏,崔涵,等. 基于岩石物理实验的致密油储集层脆性指数预测:以柴达木盆地跃灰101井区为例[J]. 新疆石油地质,2019,40(5):615–623.
ZHANG Ping, XIA Xiaomin, CUI Han, et al. Tight oil reservoir brittleness index prediction based on petrophysical experiments: a case from Yuehui 101 area of Qaidam Basin[J]. Xinjiang Petroleum Geology, 2019, 40(5): 615–623.
|
[29] |
金衍,陈勉,王怀英,等. 利用测井资料预测岩石Ⅱ型断裂韧性的方法研究[J]. 岩石力学与工程学报,2008,27(增刊2):3630–3635.
JIN Yan, CHEN Mian, WANG Huaiying, et al. Study on prediction method of fracture toughness of rock mode Ⅱ by logging data[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(supplement2): 3630–3635.
|
[30] |
袁俊亮,邓金根,张定宇,等. 页岩气储层可压裂性评价技术[J]. 石油学报,2013,34(3):523–527.
YUAN Junliang, DENG Jingen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3): 523–527.
|
[1] | DAI Yifan, HOU Bing, LIAO Zhihao. Simulation of Hydraulic Fracturing in Deep Hot Dry Rock Reservoir Based on Phase-Field Method[J]. Petroleum Drilling Techniques, 2024, 52(2): 229-235. DOI: 10.11911/syztjs.2024047 |
[2] | SHU Honglin, LIU Chen, LI Zhiqiang, DUAN Guifu, LAI Jianlin, JIANG Ming. Numerical Simulation of Complex Fracture Propagation in Shallow Shale Gas Fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84. DOI: 10.11911/syztjs.2023095 |
[3] | HOU Bing, ZHANG Qixing, CHEN Mian. Status and Tendency of Physical Simulation Technology for Hydraulic Fracturing of Shale Reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(5): 66-77. DOI: 10.11911/syztjs.2023096 |
[4] | GENG Yudi, JIANG Tingxue, LIU Zhiyuan, LUO Zhifeng, WANG Hanqing. Mechanism of Hydraulic Fracture Propagation in Deep Fracture-Cavity Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(2): 81-89. DOI: 10.11911/syztjs.2023045 |
[5] | WU Zhiying, HU Yafei, JIANG Tingxue, ZHANG Baoping, YAO Yiming, DONG Ning. Study on Propagation and Diversion Characteristics of Hydraulic Fractures in Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90-96. DOI: 10.11911/syztjs.2022084 |
[6] | MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, ZHENG Bintao, DENG Xu. Research on Interlayer Interference and the Fracture Propagation Law of Shale Oil Reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 130-138. DOI: 10.11911/syztjs.2021094 |
[7] | WU Zhiying, LU Baoping, HU Yafei, JIANG Tingxue. Experimental Study on the Physical Simulation of Dynamic Sand Transport in Multi-Stage Fractures[J]. Petroleum Drilling Techniques, 2020, 48(4): 106-110. DOI: 10.11911/syztjs.2020093 |
[8] | Zhang Yang, Yuan Xuefang, Yan Tie, Liu Ju, Li Yan. Influence of Hydraulic Fracture Fractal Propagation on Fracturing Result[J]. Petroleum Drilling Techniques, 2013, 41(4): 101-104. DOI: 10.3969/j.issn.1001-0890.2013.04.022 |
[9] | Chang Xinghao. Fracture Propogation in Shallow Tight Reservoirs of Fuxian Block[J]. Petroleum Drilling Techniques, 2013, 41(3): 109-113. DOI: 10.3969/j.issn.1001-0890.2013.03.021 |
[10] | Zhang Xu, Jiang Tingxue, Jia Changgui, Zhang Baoping, Zhou Jian. Physical Simulation of Hydraulic Fracturing of Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2013, 41(2): 70-74. DOI: 10.3969/j.issn.1001-0890.2013.02.014 |
1. |
赵金省,宋语桐,张庆祝,徐洋,胡海文,李斌,许明勇,居迎军. 致密砂岩油藏CO_2吞吐孔喉结构变化规律研究. 非常规油气. 2025(02): 54-63 .
![]() | |
2. |
刘琼. 中原油田CO_2吞吐技术及增产应用. 精细石油化工进展. 2024(05): 32-35 .
![]() | |
3. |
黄千慧,李海波,杨正明,邢济麟,陈波,李杰,薛伟,姚兰兰,杜猛,孟焕. 页岩(致密)油藏注CO_2吞吐作用距离实验. 大庆石油地质与开发. 2024(06): 128-135 .
![]() | |
4. |
宫厚健,张泽轲,于越洋,张欢,吕威,徐龙. 二维核磁共振技术评价CO_2吞吐对不同状态页岩油的动用率. 实验室研究与探索. 2024(11): 10-15 .
![]() | |
5. |
王哲,曹广胜,白玉杰,王培伦,王鑫. 低渗透油藏提高采收率技术现状及展望. 特种油气藏. 2023(01): 1-13 .
![]() | |
6. |
李凤霞,王海波,周彤,韩玲. 页岩油储层裂缝对CO_2吞吐效果的影响及孔隙动用特征. 石油钻探技术. 2022(02): 38-44 .
![]() | |
7. |
廖松林,夏阳,崔轶男,刘方志,曹胜江,汤勇. 超低渗油藏水平井注CO_2多周期吞吐原油性质变化规律研究. 油气藏评价与开发. 2022(05): 784-793 .
![]() | |
8. |
鞠斌山,于金彪,吕广忠,曹伟东. 低渗透油藏CO_2驱油数值模拟方法与应用. 油气地质与采收率. 2020(01): 126-133 .
![]() | |
9. |
张东,刘显太,刘彦东,刘启玲. CO_2驱合理注入量计算方法. 油气地质与采收率. 2020(01): 107-112 .
![]() | |
10. |
周元龙,赵淑霞,何应付,王锐. 基于响应面方法的CO_2重力稳定驱油藏优选. 断块油气田. 2019(06): 761-765 .
![]() |