LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging [J]. Petroleum Drilling Techniques,2024, 52(1):1-7. DOI: 10.11911/syztjs.2024001
Citation: LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging [J]. Petroleum Drilling Techniques,2024, 52(1):1-7. DOI: 10.11911/syztjs.2024001

Evaluation Method of Downhole Multi-Scale Fracturing Effect Based on Array Acoustic Logging

More Information
  • Received Date: October 31, 2023
  • Revised Date: December 08, 2023
  • Accepted Date: January 27, 2024
  • Available Online: February 05, 2024
  • In order to effectively monitor the hydraulic fracturing effect and improve the evaluation accuracy of reservoir fracturing, an evaluation method of the downhole fracturing effect based on array acoustic logging data was adopted. The extraction and imaging technologies of reflected Stoneley wave were used to quantitatively characterize near-wellbore fractures, and a pre-stack depth migration imaging algorithm suitable for logging observation systems was proposed, achieving high-precision imaging of fractures in far from wells. In addition, an evaluation method of multi-scale fracturing effect based on array acoustic logging was developed and applied in horizontal well X1 in an oilfield in western China. The results show that the development degree of fractures evaluated based on array acoustic logging data is positively correlated with the injection amount of fracturing fluid, and the most developed zone of fractures is consistent with the development location of natural fractures in the seismic ant attribute map. The evaluation method of the downhole fracturing effect based on array acoustic logging is of great significance to characterize the development of fractures of different scales within tens of meters around the well, and it has certain guiding significance to better play the supporting role of hydraulic fracturing technologies for energy exploration and development industry.

  • [1]
    莫里斯·杜索尔特,约翰·麦克力兰,蒋恕. 大规模多级水力压裂技术在页岩油气藏开发中的应用[J]. 石油钻探技术,2011,39(3):6–16. doi: 10.3969/j.issn.1001-0890.2011.03.002

    DUSSEAULT M, MCLENNAN J, JIANG Shu. Massive multi-stage hydraulic fracturing for oil and gas recovery from low mobility reservoirs in China[J]. Petroleum Drilling Techniques, 2011, 39(3): 6–16. doi: 10.3969/j.issn.1001-0890.2011.03.002
    [2]
    SCHULTZ R, ATKINSON G, EATON D W, et al. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay Play[J]. Science, 2018, 359(6373): 304–308. doi: 10.1126/science.aao0159
    [3]
    ATKINSON G M, EATON D W, IGONIN N. Developments in understanding seismicity triggered by hydraulic fracturing[J]. Nature Reviews Earth & Environment, 2020, 1(5): 264–277.
    [4]
    THOMAS M, PARTRIDGE T, HARTHORN B H, et al. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK[J]. Nature Energy, 2017, 2(5): 17054. doi: 10.1038/nenergy.2017.54
    [5]
    CHENG Jiulong, SONG Guangdong, SUN Xiaoyun, et al. Research developments and prospects on microseismic source location in mines[J]. Engineering, 2018, 4(5): 653–660. doi: 10.1016/j.eng.2018.08.004
    [6]
    DONG Longjun, HU Qingchun, TONG Xiaojie, et al. Velocity-free MS/AE source location method for three-dimensional hole-containing structures[J]. Engineering, 2020, 6(7): 827–834. doi: 10.1016/j.eng.2019.12.016
    [7]
    JIANG Ruochen, DAI Feng, LIU Yi, et al. Fast marching method for microseismic source location in cavern-containing rockmass: performance analysis and engineering application[J]. Engineering, 2021, 7(7): 1023–1034. doi: 10.1016/j.eng.2020.10.019
    [8]
    邹信波,刘帅,江任开,等. 水动力压裂技术在海上油田应用的可行性分析[J]. 钻采工艺,2021,44(3):60–63.

    ZOU Xinbo, LIU Shuai, JIANG Renkai, et al. Feasibility analysis of application of hydrodynamic fracturing technology in offshore oilfields[J]. Drilling & Production Technology, 2021, 44(3): 60–63.
    [9]
    张国栋,庄春喜,黑创. 东海西湖凹陷探井储层压后缝高评价新方法[J]. 石油钻探技术,2016,44(5):122–126.

    ZHANG Guodong, ZHUANG Chunxi, HEI Chuang. New techniques for fracture height determination in exploration wells drilled in the Xihu Sag, East China Sea[J]. Petroleum Drilling Techniques, 2016, 44(5): 122–126.
    [10]
    仝少凯,高德利. 水力压力波动注入压裂增产工艺的力学原理[J]. 石油钻采工艺,2018,40(2):265–274.

    TONG Shaokai, GAO Deli. Mechanical principles of hydraulic pressure fluctuation injection based on fracturing technology[J]. Oil Drilling & Production Technology, 2018, 40(2): 265–274.
    [11]
    杨秀夫,刘希圣,陈勉,等. 国内外水力压裂技术现状及发展趋势[J]. 钻采工艺,1998,21(4):21–25.

    YANG Xiufu, LIU Xisheng, CHEN Mian, et al. Status quo of hydraulic fracturing technique and its developing trend at home and abroad[J]. Drilling & Production Technology, 1998, 21(4): 21–25.
    [12]
    赵博雄,王忠仁,刘瑞,等. 国内外微地震监测技术综述[J]. 地球物理学进展,2014,29(4):1882–1888.

    ZHAO Boxiong, WANG Zhongren, LIU Rui, et al. Review of microseismic monitoring technology research[J]. Progress in Geophysics, 2014, 29(4): 1882–1888.
    [13]
    于辉,张海江. 水力压裂微地震监测稳定共振频率信号的解释[J]. 物探化探计算技术,2017,39(1):90–95. doi: 10.3969/j.issn.1001-1749.2017.01.13

    YU Hui, ZHANG Haijiang. Interpretation of stable resonance frequency signals observed from microseismic monitoring during hydraulic fracturing[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(1): 90–95. doi: 10.3969/j.issn.1001-1749.2017.01.13
    [14]
    张东晓,杨婷云. 页岩气开发综述[J]. 石油学报,2013,34(4):792–801. doi: 10.7623/syxb201304023

    ZHANG Dongxiao, YANG Tingyun. An overview of shale-gas production[J]. Acta Petrolei Sinica, 2013, 34(4): 792–801. doi: 10.7623/syxb201304023
    [15]
    张驰,周彤,肖佳林,等. 涪陵页岩气田加密井压裂技术的实践与认识[J]. 断块油气田,2022,29(6):775–779.

    ZHANG Chi, ZHOU Tong, XIAO Jialin, et al. Practice and knowledge of fracturing technology for infill wells in Fuling Shale Gas Field[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 775–779.
    [16]
    刘博,苗红波,徐刚,等. 微地震同步压裂监测技术研究与应用[J]. 钻采工艺,2017,40(4):53–55. doi: 10.3969/J.ISSN.1006-768X.2017.04.17

    LIU Bo, MIAO Hongbo, XU Gang, et al. Study on microseismic monitoring of synchronous fracturing and its applications[J]. Drilling & Production Technology, 2017, 40(4): 53–55. doi: 10.3969/J.ISSN.1006-768X.2017.04.17
    [17]
    牛德成,苏远大. 基于声波远探测的浅海软地层邻井井眼成像方法[J]. 石油钻探技术,2022,50(6):21–27. doi: 10.11911/syztjs.2022111

    NIU Decheng, SU Yuanda. Adjacent borehole imaging method based on acoustic remote detection in shallow unconsolidated formations[J]. Petroleum Drilling Techniques, 2022, 50(6): 21–27. doi: 10.11911/syztjs.2022111
    [18]
    段银鹿,李倩,姚韦萍. 水力压裂微地震裂缝监测技术及其应用[J]. 断块油气田,2013,20(5):644–648.

    DUAN Yinlu, LI Qian, YAO Weiping. Microseismic fracture monitoring technology of hydraulic fracturing and its application[J]. Fault-Block Oil & Gas Field, 2013, 20(5): 644–648.
    [19]
    朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验[J]. 石油钻探技术,2022,50(6):35–40.

    ZHU Zuyang. Numerical simulation and test of velocity imaging for remote detection acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35–40.
    [20]
    孙志峰,仇傲,金亚,等. 随钻多极子声波测井仪接收声系的优化设计与试验[J]. 石油钻探技术,2022,50(4):114–120. doi: 10.11911/syztjs.2022089

    SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools[J]. Petroleum Drilling Techniques, 2022, 50(4): 114–120. doi: 10.11911/syztjs.2022089
    [21]
    刘西恩,孙志峰,仇傲,等. 随钻四极子声波测井仪的设计及试验[J]. 石油钻探技术,2022,50(3):125–131. doi: 10.11911/syztjs.2022058

    LIU Xien, SUN Zhifeng, QIU Ao, et al. Design and experiment for a quadrupole acoustic LWD tool[J]. Petroleum Drilling Techniques, 2022, 50(3): 125–131. doi: 10.11911/syztjs.2022058
    [22]
    刘美成. 致密储层测井评价技术及发展方向[J]. 特种油气藏,2022,29(4):12–20. doi: 10.3969/j.issn.1006-6535.2022.04.002

    LIU Meicheng. Logging evaluation technology and further development of tight reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 12–20. doi: 10.3969/j.issn.1006-6535.2022.04.002
    [23]
    陈斌,蔺敬旗,李兆春,等. 阵列声波测井在页岩油体积压裂效果评价中的应用[J]. 断块油气田,2021,28(4):550–554.

    CHEN Bin, LIN Jingqi, LI Zhaochun, et al. Application of array acoustic logging in shale oil volume fracturing effect evaluation[J]. Fault-Block Oil & Gas Field, 2021, 28(4): 550–554.
    [24]
    黑创,罗明璋,邹骁. 基于井孔散射波能量的水力压裂效果评价方法[J]. 长江大学学报(自然科学版),2021,18(3):14–20.

    HEI Chuang, LUO Mingzhang, ZOU Xiao. Evaluation methods of the hydraulic fracturing effect based on the energy of borehole scattered wave[J]. Journal of Yangtze University(Natural Science Edition), 2021, 18(3): 14–20.
    [25]
    祁晓,张璋,李东,等. 基于阵列声波测井技术的海上砂岩储层压裂效果评价方法[J]. 石油钻探技术,2023,51(6):128–134.

    QI Xiao, ZHANG Zhang, LI Dong, et al. Evaluation of fracturing effects in offshore sandstone reservoirs based on array acoustic logging technology[J]. Petroleum Drilling Techniques, 2023, 51(6): 128–134.
    [26]
    LI Ning, WANG Kewen, WU Hongliang, et al. Shock-induced Stoneley waves in carbonate rock samples[J]. Geophysics, 2019, 84(5): D209–D216. doi: 10.1190/geo2018-0399.1
    [27]
    LI Ning, WANG Kewen, LIU Peng, et al. Experimental study on attenuation of Stoneley wave under different fracture factors[J]. Petroleum Exploration and Development, 2021, 48(2): 299–307. doi: 10.1016/S1876-3804(21)60024-1
    [28]
    夏宏泉,胡慧,杨林,等. 基于声波变密度测井信息识别水平井压裂裂缝的方法[J]. 石油钻探技术,2017,45(5):113–117.

    XIA Hongquan, HU Hui, YANG Lin, et al. Method about improving accuracy of fracture fluid friction pressure[J]. Petroleum Drilling Techniques, 2017, 45(5): 113–117.
    [29]
    FAN Huajun, LIU Peng, ZHAO Hao, et al. Forward modeling of P- and S-waves response of fractures intersected with horizontal wells in tight reservoirs[J]. Frontiers in Earth Science, 2023, 11: 1149171. doi: 10.3389/feart.2023.1149171
    [30]
    LIU Peng, WU Hongliang, LI Yusheng, et al. Hydraulic fracturing evaluation utilizing single-well S-wave imaging: improved processing method and field examples[C]//SPWLA 61st Annual Logging Symposium 2020. Houston: Society of Petrophysicists and Well-Log Analysts, 2020: J5TNW4WI.
    [31]
    李宁,冯周,武宏亮,等. 中国陆相页岩油测井评价技术方法新进展[J]. 石油学报,2023,44(1):28–44. doi: 10.7623/syxb202301003

    LI Ning, FENG Zhou, WU Hongliang, et al. New advances in methods and technologies for well logging evaluation of continental shale oil in China[J]. Acta Petrolei Sinica, 2023, 44(1): 28–44. doi: 10.7623/syxb202301003
  • Cited by

    Periodical cited type(5)

    1. 徐勤亮,陈景皓,高强,汪利伟,李忠利. 低温环境下海洋输油橡胶软管的扭转性能. 科学技术与工程. 2024(25): 10755-10761 .
    2. 王宇哲,张凯,杨甘生,李亚洲. 南极钻机的耐温材料和保温方式的优选. 钻探工程. 2023(S1): 82-89 .
    3. 孟广伟,骆青,钟声,孟广福. 石油化工管道接头橡胶防腐密封材料研究. 化学与粘合. 2022(04): 336-340 .
    4. 王宴滨,张辉,高德利,柯珂,刘文红. 低温环境下钻柱材料力学特性试验及强度设计. 石油钻探技术. 2021(03): 35-41 . 本站查看
    5. 顾铖璋. 深冷环境下密封橡胶的力学性能研究. 橡胶科技. 2021(08): 375-381 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (410) PDF downloads (197) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return