LIU Yaowen, BIAN Xiaobing, LI Shuangming, JIANG Tingxue, ZHANG Chi. An Evaluation Method of Shale Fracability Based on Stress Inversion[J]. Petroleum Drilling Techniques, 2022, 50(1): 82-88. DOI: 10.11911/syztjs.2021098
Citation: LIU Yaowen, BIAN Xiaobing, LI Shuangming, JIANG Tingxue, ZHANG Chi. An Evaluation Method of Shale Fracability Based on Stress Inversion[J]. Petroleum Drilling Techniques, 2022, 50(1): 82-88. DOI: 10.11911/syztjs.2021098

An Evaluation Method of Shale Fracability Based on Stress Inversion

More Information
  • Received Date: February 15, 2021
  • Revised Date: September 20, 2021
  • Available Online: December 27, 2021
  • The evaluation of in-situ stresses and fracability is the basis of shale fracturing design. However, it is still challenging to establish a unified fracability evaluation method due to the unique structure and composition of shale. A new evaluation method of shale fracability based on stresses inversion was developed in this paper with a southeastern Sichuanshale block as the research object. The inversions of break down pressure and horizontal principal stresses were performed for reservoirs in the block with the fracturing data of 196 intervals of more than 10 wells after establishing a real-time conversion model for wellhead and bottom hole pressure. The relative error between inversion results and core test results was less than 10%. Depending on the comprehensive consideration of rock characteristics and fracturing parameters of the reservoirs, seven evaluation parameters were selected: the brittleness index, minimum horizontal principal stress gradient, fracture pressure gradient, difference coefficient of minimum and maximum horizontal stresses, comprehensive sand to liquid ratio, proportion of slick water, and proportion of 40/70-mesh and 30/50-mesh proppant. The weight of each evaluation parameter was determined by the coefficient-of-variation method. The resulting evaluation method for shale fracability was implemented to calculate the comprehensive fracability indexes of four wells subjected to blowout test wells in the target block, and comprehensive fracability index was found to be positively correlated well with test production. Specifically, comprehensive evaluation parameters were improved with respect to intervals of one well after the adjustment of fracturing parameters based on the evaluation and calculation of the comprehensive fracability index of fractured intervals with similar geological characteristics. The research shows that the new approach, which is an evaluation method of shale fracability based on stress inversion, can make full use of fracturing data to guide the fracturing of shale gas wells. It is of great significance for carrying out "one interval one scheme, fine fracturing" to increase the productivity of single well, and to enhance the overall development effect of the block.
  • [1]
    贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129–136.

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129–136.
    [2]
    邹才能,翟光明,张光亚,等. 全球常规–非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发,2015,42(1):13–25. doi: 10.11698/PED.2015.01.02

    ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13–25. doi: 10.11698/PED.2015.01.02
    [3]
    邹才能,赵群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781–1796.

    ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, mail challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781–1796.
    [4]
    路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术,2018,46(1):1–9.

    LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
    [5]
    陈勉, 金衍, 张广清. 石油工程岩石力学[M]. 北京: 科学出版社, 2008: 69.

    CHEN Mian, JIN Yan, ZHANG Guangqing. Petroleum engineering rock mechanics [M]. Beijing: Science Press, 2008: 69.
    [6]
    蒋廷学. 压裂施工中井底压力的计算方法及其应用[J]. 天然气工业,1997,17(5):82–84. doi: 10.3321/j.issn:1000-0976.1997.05.001

    JIANG Tingxue. A method to calculate bottom hole pressure during fracturing and its application[J]. Natural Gas Industry, 1997, 17(5): 82–84. doi: 10.3321/j.issn:1000-0976.1997.05.001
    [7]
    李培超. 水平井地层破裂压力的解析公式[J]. 上海工程技术大学学报,2011,25(1):41–45. doi: 10.3969/j.issn.1009-444X.2011.01.010

    LI Peichao. Analytical formula of formation breakdown pressure for horizontal well[J]. Journal of Shanghai University of Engineering Science, 2011, 25(1): 41–45. doi: 10.3969/j.issn.1009-444X.2011.01.010
    [8]
    曾义金,陈作,卞晓冰. 川东南深层页岩气分段压裂技术的突破与认识[J]. 天然气工业,2016,36(1):61–67. doi: 10.3787/j.issn.1000-0976.2016.01.007

    ZENG Yijin, CHEN Zuo, BIAN Xiaobing, et al. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications[J]. Natural Gas Industry, 2016, 36(1): 61–67. doi: 10.3787/j.issn.1000-0976.2016.01.007
    [9]
    苏生瑞, 黄润秋, 王士天. 断裂构造对地应力场的影响及其工程应用[M]. 北京: 科学出版社, 2002: 2–5.

    SU Shengrui, HUANG Runqiu, WANG Shitian. Influence of fault structure on stress field and its engineering application[M]. Beijing: Science Press, 2002: 2–5.
    [10]
    蒋廷学,卞晓冰,苏瑗,等. 页岩可压性指数评价新方法及应用[J]. 石油钻探技术,2014,42(5):16–20.

    JIANG Tingxue, BIAN Xiaobing, SU Yuan, et al. A new method for evaluating shale fracability index and its application[J]. Petroleum Drilling Techniques, 2014, 42(5): 16–20.
    [11]
    卞晓冰,蒋廷学,贾长贵,等. 基于施工曲线的页岩气井压后评估新方法[J]. 天然气工业,2016,36(2):60–65. doi: 10.3787/j.issn.1000-0976.2016.02.008

    BIAN Xiaobing, JIANG Tingxue, JIA Changgui, et al. A new post-fracturing evaluation method for shale gas wells based on fracturing curves[J]. Natural Gas Industry, 2016, 36(2): 60–65. doi: 10.3787/j.issn.1000-0976.2016.02.008
    [12]
    HOWELL J V. Glossary of geology and related sciences[M]. Washington: American Geological Institute, 1957: 99-102.
    [13]
    JARVIE D. Finding bypassed or overlooked pay zones using geochemistry techniques[R]. IPTC 12918, 2008.
    [14]
    WANG F P, REED R M. Pore networks and fluid flow in gas shales[R]. SPE 124253, 2009.
    [15]
    RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale[R]. SPE 115258, 2008.
    [16]
    蒋廷学,卞晓冰. 页岩气储层评价新技术:甜度评价方法[J]. 石油钻探技术,2016,44(4):1–6.

    JIANG Tingxue, BIAN Xiaobing. The novel technology of shale gas play evaluaton: sweetness calculation method[J]. Petroleum Drilling Techniques, 2016, 44(4): 1–6.
    [17]
    李庆辉,陈勉,金衍,等. 页岩气储层岩石力学特性及脆性评价[J]. 石油钻探技术,2012,40(4):17–22. doi: 10.3969/j.issn.1001-0890.2012.04.004

    LI Qinghui, CHEN Mian, JIN Yan, et al. Rock mechanical properties and brittleness evaluation of shale gas reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17–22. doi: 10.3969/j.issn.1001-0890.2012.04.004
    [18]
    田福春,刘学伟,张胜传,等. 大港油田陆相页岩油滑溜水连续加砂压裂技术[J]. 石油钻探技术,2021,49(4):118–124.

    TIAN Fuchun, LIU Xuewei, ZHANG Shengchuan, et al. Continuous sand fracturing technology with slick water for continental shale oil in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 118–124.
    [19]
    王兴文,何颂根,林立世,等. 威荣区块深层页岩气井体积压裂技术[J]. 断块油气田,2021,28(6):745–749.

    WANG Xingwen, HE Songgen, LIN Lishi, et al. Volume fracturing technology of deep shale gas well in Weirong Block[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 745–749.
    [20]
    李杉杉,孙虎,张冕,等. 长庆油田陇东地区页岩油水平井细分切割压裂技术[J]. 石油钻探技术,2021,49(4):92–98.

    LI Shanshan, SUN Hu, ZHANG Mian, et al. Subdivision cutting fracturing technology for horizontal shale oil wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92–98.
    [21]
    QUINN J B, QUINN G D. Indentation brittleness of ceramics: a fresh approach[J]. Journal of Materials Science, 1997, 32(16): 4331–4346. doi: 10.1023/A:1018671823059
    [22]
    李庆辉,陈勉,金衍,等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报,2012,31(8):1680–1685.

    LI Qinghui, CHEN Mian, JIN Yan, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1680–1685.
    [23]
    黄进,吴雷泽,游园,等. 涪陵页岩气水平井工程甜点评价与应用[J]. 石油钻探技术,2016,44(3):16–20.

    HUANG Jin, WU Leize, YOU Yuan, et al. The evaluation and application of engineering sweet spots in a horizontal well in the Fuling Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2016, 44(3): 16–20.
    [24]
    王汉青,陈军斌,张杰,等. 基于权重分配的页岩气储层可压性评价新方法[J]. 石油钻探技术,2016,44(3):88–94.

    WANG Hanqing, CHEN Junbin, ZHANG Jie, et al. A new method of fracability evaluation of shale gas reservoir based on weight allocation[J]. Petroleum Drilling Techniques, 2016, 44(3): 88–94.
    [25]
    赖富强,罗涵,覃栋优,等. 基于层次分析法的页岩气储层可压裂性评价研究[J]. 特种油气藏,2018,25(3):154–159.

    LAI Fuqiang,LUO Han,QIN Dongyou, et al. Crushability evaluation of shale Gas reservoir based on analytic hierarchy process[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 154–159.
    [26]
    吕照,刘叶轩,陈希,等. 页岩油储层可压性分析及指数预测[J]. 断块油气田,2021,28(6):739–744.

    LYU Zhao, LIU Yexuan, CHEN Xi, et al. The fracability analysis and index prediction of shale oil reservoir[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 739–744.
    [27]
    郝丽华,甘仁忠,潘丽燕,等. 玛湖凹陷风城组页岩油巨厚储层直井体积压裂关键技术[J]. 石油钻探技术,2021,49(4):99–105.

    HAO Lihua, GAN Renzhong, PAN Liyan, et al. Key technology of volumetric fracturing in vertical wells of hugely thick shale oil reservoirs in the Fengcheng Formation of the Mahu Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 99–105.
  • Cited by

    Periodical cited type(5)

    1. 马天寿,向国富,桂俊川,贾利春,唐宜家. 基于物理约束的分布式神经网络三维地应力预测模型. 地球物理学报. 2024(08): 3211-3228 .
    2. 田山川,甘仁忠,肖琳,丁乙,魏瑞华,陈晓文,徐永华,梁利喜. 准噶尔盆地南缘异常高压泥岩段地层压力预测方法. 特种油气藏. 2024(05): 20-30 .
    3. 吴百烈,彭成勇,武广瑷,楼一珊,尹彪. 可压性指数对压裂裂缝扩展规律的影响研究——以南海LF油田为例. 石油钻探技术. 2023(03): 105-112 . 本站查看
    4. 杜书恒,沈文豪,赵亚溥. 页岩储层应力敏感性定量评价:思路及应用. 力学学报. 2022(08): 2235-2247 .
    5. 马天寿,向国富,石榆帆,桂俊川,张东洋. 基于双向长短期记忆神经网络的水平地应力预测方法. 石油科学通报. 2022(04): 487-504 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (353) PDF downloads (70) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return