Citation: | WEI Zanqing, TIAN Zhibin, YANG Gengjia, et al. Design and application of a hydraulic rotary sidewall coring tool at high temperatures [J]. Petroleum Drilling Techniques,2023, 51(3):73-82. DOI: 10.11911/syztjs.2023042 |
Since it is difficult to obtain stratigraphic cores in deep exploration wells, a hydraulic rotary sidewall coring tool with a maximum operating temperature of 205 °C and high reliability was developed. The coring tool is composed of a ground system, a control acquisition short section, and a mechanical hydraulic section, and adopts an integrated thermos bottle technology, passive thermal management technology, and stuck-freeing technology, which effectively improve its temperature resistance and engineering safety. The performance of these key technical functions was verified through simulation and ground tests. The actual operation results show that the tool can operate normally in exploratory wells with a high temperature of 189 °C and high pressure, high relative density of drilling fluid, and large formation pressure difference, and further, the average core recovery rate exceeds 90%. In addition, it has the characteristics of high temperature resistance, stick and jam prevention, and high coring efficiency and core recovery rate and shows excellent adaptability and high safety and reliability in solving problems in complex well sections, such as hole enlargement, hole contraction, and borehole collapse.
[1] |
信召玲,苏鹤成,张国强,等. 旋转井壁取心作业难点及解决方案[J]. 中国石油和化工标准与质量,2019,39(21):111–112.
XIN Zhaoling, SU Hecheng, ZHANG Guoqiang, et al. Difficulties and solutions of rotary sidewall coring operation[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(21): 111–112.
|
[2] |
王莹,杨帆,陆敬武,等. 直驱式旋转井壁取心仪器电路设计[J]. 石油管材与仪器,2017,3(5):9–11.
WANG Ying, YANG Fan, LU Jingwu, et al. Circuit design for direct-drive extended rotary sidewall coring tools[J]. Petroleum Tubular Goods & Instruments, 2017, 3(5): 9–11.
|
[3] |
王晋. 旋转式井壁取心地面系统设计与实现[D]. 长春: 吉林大学, 2019.
WANG Jin. Design and implementation of surface system for rotary sidewall coring[D]. Changchun: Jilin University, 2019.
|
[4] |
郝桂青,庞希顺,欧阳剑. 增强型旋转式井壁取芯器技术及应用[J]. 石油仪器,2011,25(5):22–24.
HAO Guiqing, PANG Xishun, OUYANG Jian. Enhanced rotary sidewall core technology and its application[J]. Petroleum Instruments, 2011, 25(5): 22–24.
|
[5] |
苏鹤成,苑仁国. 有效提高旋转井壁取心收获率的工艺探讨[J]. 化工管理,2014(33):187.
SU Hecheng, YUAN Renguo. Discussion on the technology of effectively improving the rotary sidewall coring tool[J]. Chemical Enterprise Management, 2014(33): 187.
|
[6] |
杨兴琴,余迎. 国外3种大直径旋转井壁取心器性能对比[J]. 测井技术,2012,36(6):610.
YANG Xingqin, YU Ying. Performance comparison of three foreign large diameter rotary sidewall coring tools[J]. Well Logging Technology, 2012, 36(6): 610.
|
[7] |
牛延吉,刘先平,嵇成高,等. 大直径旋转井壁取心仪研制与应用[J]. 测井技术,2018,42(2):235–237.
NIU Yanji, LIU Xianping, JI Chenggao, et al. Development and application of the large diameter rotary sidewall coring tool[J]. Well Logging Technology, 2018, 42(2): 235–237.
|
[8] |
陆敬武,曹扬,杨帆,等. 新型旋转井壁取心仪在大庆油田的应用[J]. 测井技术,2016,40(6):761–764.
LU Jingwu, CAO Yang, YANG Fan, et al. Application of enhanced rotary sidewall coring logging tool in Daqing Oilfield[J]. Well Logging Technology, 2016, 40(6): 761–764.
|
[9] |
邓强,谭忠健,尚锁贵,等. 新型旋转井壁取心工具在渤海油田的应用[J]. 石油天然气学报,2012,34(1):157–160.
DENG Qiang, TAN Zhongjian, SHANG Suogui, et al. The application of a new rotary wall coring tool in Bohai Oilfield[J]. Journal of Oil and Gas Technology, 2012, 34(1): 157–160.
|
[10] |
常毓强. 大直径旋转井壁取心测井技术及临兴气田应用[J]. 当代化工研究,2022(8):115–117.
CHANG Yuqiang. Large-diameter rotating borehole core logging technology and its application in Linxing Gas Field[J]. Modern Chemical Research, 2022(8): 115–117.
|
[11] |
刘辉,马辉运,曾立新,等. 高温高压井下工具试验系统的研制与应用[J]. 石油机械,2019,47(12):100–105.
LIU Hui, MA Huiyun, ZENG Lixin, et al. High temperature and high pressure downhole tool test system[J]. China Petroleum Machinery, 2019, 47(12): 100–105.
|
[12] |
罗鸣,冯永存,桂云,等. 高温高压钻井关键技术发展现状及展望[J]. 石油科学通报,2021,6(2):228–244. doi: 10.3969/j.issn.2096-1693.2021.02.018
LUO Ming, FENG Yongcun, GUI Yun, et al. Development status and prospect of key technologies for high temperature and high pressure drilling[J]. Petroleum Science Bulletin, 2021, 6(2): 228–244. doi: 10.3969/j.issn.2096-1693.2021.02.018
|
[13] |
王喜辉,张忠强. 超高温高压井取心技术在LD13井的应用[J]. 海洋石油,2022,42(4):91–94.
WANG Xihui, ZHANG Zhongqiang. Application of coring technology in ultra high temperature and high pressure well in Well LD13[J]. Offshore Oil, 2022, 42(4): 91–94.
|
[14] |
王健. FCT-2旋转式井壁取心收获率影响因素浅析[J]. 石油管材与仪器,2020,6(1):94–97.
WANG Jian. Influencing factors analysis on FCT-2 rotary sidewall coring recovery rate[J]. Petroleum Tubular Goods & Instruments, 2020, 6(1): 94–97.
|
[15] |
刘铁民,冯永仁,田志宾. 一种新型的岩心检测原理分析研究及应用[J]. 石油化工应用,2021,40(6):67–71.
LIU Tiemin, FENG Yongren, TIAN Zhibin. Analysis and application of a new core detection principle[J]. Petrochemical Industry Application, 2021, 40(6): 67–71.
|
[16] |
魏赞庆,彭嘉乐,田志宾,等. 旋转井壁取心仪热管理系统设计及应用[J]. 测井技术,2022,46(3):251–256.
WEI Zanqing, PENG Jiale, TIAN Zhibin, et al. Design and application of thermal management system for rotary sidewall coring tool[J]. Well Logging Technology, 2022, 46(3): 251–256.
|
[17] |
魏赞庆,彭嘉乐,蓝威,等. 高温井下低熔点合金储热模块封装及试验[J]. 石油机械,2022,50(11):9–15.
WEI Zanqing, PENG Jiale, LAN Wei, et al. Package and test of low-melting alloy heat storage module in high-temperature wellbore[J]. China Petroleum Machinery, 2022, 50(11): 9–15.
|
[18] |
PENG Jiale, WANG Yujun, DING Siqi, et al. Rapid detection of the vacuum failure of logging tools based on the variation in equivalent thermal conductivity[J]. International Journal of Thermal Sciences, 2023, 188: 108245. doi: 10.1016/j.ijthermalsci.2023.108245
|
[19] |
DI Xiaobo, GAO Yimin, BAO Chonggao, et al. Thermal insulation property and service life of vacuum insulation panels with glass fiber chopped strand as core materials[J]. Energy and Buildings, 2014, 73: 176–183. doi: 10.1016/j.enbuild.2014.01.010
|
[20] |
BAETENS R, JELLE B P, THUE J V, et al. Vacuum insulation panels for building applications: A review and beyond[J]. Energy and Buildings, 2010, 42(2): 147–172. doi: 10.1016/j.enbuild.2009.09.005
|
[21] |
BOUQUEREL M, DUFORESTEL T, BAILLIS D, et al. Heat transfer modeling in vacuum insulation panels containing nanoporous silicas: A review[J]. Energy and Buildings, 2012, 54: 320–336. doi: 10.1016/j.enbuild.2012.07.034
|
[22] |
PENG Jiale, LAN Wei, WEI Fulong, et al. A numerical model coupling multiple heat transfer modes to develop a passive thermal management system for logging tool[J]. Applied Thermal Engineering, 2023, 223: 120011. doi: 10.1016/j.applthermaleng.2023.120011
|
[23] |
LAN Wei, ZHANG Jiawei, PENG Jiale, et al. Distributed thermal management system for downhole electronics at high tempera-ture[J]. Applied Thermal Engineering, 2020, 180: 115853. doi: 10.1016/j.applthermaleng.2020.115853
|
[24] |
王新杰. 旋转式井壁取芯器的设计与机构运动仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.
WANG Xinjie. Study on the design and kinematic simulation of the rotary sidewall coring tool[D]. Harbin: Harbin Institute of Technology, 2006.
|
1. |
姚辉前,李振,刘伟,张春儒,吕嘉晨. 致密油气尾管回接不固井压裂井筒技术研究与应用. 石油矿场机械. 2024(02): 57-62 .
![]() | |
2. |
邹剑,高尚,兰夕堂,符扬洋,张新平,徐凤祥,王玥,张秀青. 基于有限元仿真技术的超大通径悬挂器的研制与应用. 当代化工. 2024(08): 1944-1947+1951 .
![]() | |
3. |
田晓勇,张京华,蒋海涛,蒋本强,苟旭东,古青,宋剑鸣. 尾管悬挂系统在高温、强碱、高盐环境失效分析与改进应用. 内蒙古石油化工. 2024(10): 4-7 .
![]() | |
4. |
胡晋军,韩广海,张海峰,史为纪. 北黄海太阳盆地复杂深井小间隙尾管固井技术. 石油钻探技术. 2023(01): 40-44 .
![]() | |
5. |
曾义金,金衍,周英操,陈军海,李牧,光新军,卢运虎. 深层油气钻采技术进展与展望. 前瞻科技. 2023(02): 32-46 .
![]() | |
6. |
曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议. 石油钻探技术. 2023(04): 66-73 .
![]() | |
7. |
王泽. 东海X井下7″尾管作业实践与研究. 化工管理. 2023(25): 170-172 .
![]() | |
8. |
袁伟楠,张作伟,孙轶杰. 298.450mm套管坐挂244.475mm悬挂器技术研究与应用. 石化技术. 2023(10): 101-103 .
![]() | |
9. |
黄峰,王有伟,田进. 深层高温页岩气井固井流体研究进展. 辽宁化工. 2022(01): 54-59+63 .
![]() | |
10. |
张瑞. 顶部驱动液压尾管悬挂器研制与现场试验. 钻采工艺. 2022(04): 26-31 .
![]() | |
11. |
谢斌,陈超峰,马都都,练章华,史君林. 超深高温高压井尾管悬挂器安全性评价新方法. 天然气工业. 2022(09): 93-101 .
![]() | |
12. |
张瑞. 压力平衡式尾管悬挂器在西北超深井的应用. 石油机械. 2022(10): 1-7 .
![]() | |
13. |
路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 .
![]() | |
14. |
冯丽莹,敖竹青,段风海,曹海涛,宋兵. 深井、超深井短尾管安全丢手关键技术研究. 石油机械. 2021(03): 34-39 .
![]() | |
15. |
周建平,杨战伟,徐敏杰,王丽伟,姚茂堂,高莹. 工业氯化钙加重胍胶压裂液体系研究与现场试验. 石油钻探技术. 2021(02): 96-101 .
![]() | |
16. |
胡晋军,张立丽,张耀,孟庆祥,黄志刚. 埕海油田大斜度井超短尾管固井技术. 石油钻探技术. 2021(03): 81-86 .
![]() | |
17. |
郭元岭,张杰,赵利华,岑芳,王丹,叶欣,潘伟义. 油气勘探开发科技管理基本特征与实践. 石油科技论坛. 2021(02): 23-28+34 .
![]() | |
18. |
刘国祥,赵德利,李振,孔博. 深井超深井短轻尾管短路故障测试方法与现场应用. 石油钻探技术. 2021(05): 70-74 .
![]() | |
19. |
郭朝辉,李振,罗恒荣. Φ273.1mm无限极循环尾管悬挂器在元坝气田的应用研究. 石油钻探技术. 2021(05): 64-69 .
![]() | |
20. |
张瑞,李夯,阮臣良. ?193.7 mm×?139.7 mm旋转尾管悬挂器的研制与应用. 石油机械. 2020(04): 9-15 .
![]() | |
21. |
朱玉磊. 我国尾管悬挂器技术发展探讨. 科技创新与应用. 2020(20): 149-150 .
![]() | |
22. |
丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 .
![]() |