ZHU Mingming, SUN Huan, SUN Yan, et al. Loss circulation control technology for malignant water leakage layer in Longdong tight oil region [J]. Petroleum Drilling Techniques,2023, 51(6):50-56. DOI: 10.11911/syztjs.2023003
Citation: ZHU Mingming, SUN Huan, SUN Yan, et al. Loss circulation control technology for malignant water leakage layer in Longdong tight oil region [J]. Petroleum Drilling Techniques,2023, 51(6):50-56. DOI: 10.11911/syztjs.2023003

Loss Circulation Control Technology for Malignant Water Leakage Layer in Longdong Tight Oil Region

More Information
  • Received Date: May 22, 2022
  • Revised Date: October 15, 2023
  • Available Online: July 31, 2023
  • Natural fractures are encountered in the Luohe Formation within the Longdong tight oil area of Changqing Oilfield. Drilling with polymer drilling fluid is liable to lost circulation. As the formation is communicated with aquifer, with conventional plugging methods, the plugging material is dilution-prone and is washed by external fluid making it hard to stay in the thief zone, resulting in frequent lost circulations. To cope with this problem, a water-reactive plugging fluid was developed, by optimizing the prepolymer components and the addition of catalyst and diluent. In order to prevent it from being solidified through water reaction during injection, supporting injection tools with “packer + chemical storage chamber” were developed. Combining the plugging fluid and supporting injection tools, a loss circulation control technology for malignant water leakage layer in Longdong tight oil region was formed. The water-reactive plugging fluid had the characteristics of easy dispersion, self-emulsification, adjustable reaction rate, and high strength after consolidation, and the compressive strength of the consolidated sand body was greater than 5.6 MPa. The supporting injection tools safely pumped the water-reactive type plugging liquid to the leakage layer through a stepwise pressure increase. Loss circulation control technology for malignant water leakage layer was applied in thief zones in four wells in the Longdong tight oil area, which efficiently solved the lost circulation problem in Luohe Formation in one go. The field application show that the technology can solve the problem of leakage in the fractured formation when there is communication with the aquifer and provide technical support for the exploration and development of Longdong tight oil.

  • [1]
    陈宁,邓凯,陈小荣,等. 可固化堵漏技术在长庆油田的研究与应用[J]. 中国石油和化工标准与质量,2021,41(3):157–159.

    CHEN Ning, DENG Kai, CHEN Xiaorong, et al. Study and application of solidable plugging technology in Changqing Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(3): 157–159.
    [2]
    马明新. 适用于恶性漏失的可酸溶、可膨胀堵漏材料[J]. 中外能源,2020,25(增刊1):73.

    MA Mingxin. Acid soluble and expandable plugging materials suitable for malignant leakage[J]. Sino-Global Energy, 2020, 25(supplement1): 73.
    [3]
    李锦峰. 恶性漏失地层堵漏技术研究[J]. 探矿工程(岩土钻掘工程),2019,46(5):19–27.

    LI Jinfeng. The status and development direction of plugging technology for severe circulation loss formation[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019, 46(5): 19–27.
    [4]
    谭宾. 四川盆地南部地区深层页岩气工程关键技术与展望[J]. 天然气工业,2022,42(8):212–219.

    TAN Bin. Key technologies and prospects of deep shale gas engineering in the southern Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 212–219.
    [5]
    童传新,张海荣,徐璧华,等. 深水井精细控压下套管研究[J]. 西南石油太学学报(自然科学版),2021,43(4):175–182.

    TONG Chuanxin, ZHANG Hairong, XU Bihua, et al. A study of precisely managed pressure during casing running in deep water wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(4): 175–182.
    [6]
    孙伟峰,刘凯,张德志,等. 结合钻井工况与 Bi-GRU 的溢流与井漏监测方法 [J]. 石油钻探技术,2023,51(3):37–44.

    SUN Weifeng, LIU Kai, ZHANG Dezhi, et al. A kick and lost circulation monitoring method combining Bi-GRU and drilling conditions[J]. Petroleum Drilling Techniques, 2023, 51(3): 37–44.
    [7]
    林四元,卢运虎,张立权. 琼东南盆地高温高压井强承压堵漏技术[J]. 钻井液与完井液,2023,40(3):363–367.

    LIN Siyuan, LU Yunhu, ZHANG Liquan. Mud loss control technology in Qiongdongnan basin under high temperature and high pressure bearing conditions[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 363–367.
    [8]
    艾磊,宫臣兴,谢江锋,等. 超分子聚合物堵漏技术在长庆油田恶性漏失井的应用[J]. 钻井液与完井液,2021,38(6):705–714.

    AI Lei, GONG Chenxing, XIE Jiangfeng, et al. Application of supramolecular polymer plugging technology in Changqing Oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(6): 705–714.
    [9]
    张新民,聂勋勇,王平全,等. 特种凝胶在钻井堵漏中的应用[J]. 钻井液与完井液,2007,24(5):83–84.

    ZHANG Xinmin, NIE Xunyong, WANG Pingquan, et al. A special gel for mud loss control[J]. Drilling Fluid & Completion Fluid, 2007, 24(5): 83–84.
    [10]
    李涛,杨哲,徐卫强,等. 泸州区块深层页岩气水平井优快钻井技术[J]. 石油钻探技术,2023,51(1):16–21.

    LI Tao, YANG Zhe, XU Weiqiang, et al. Optimized and fast drilling technology for deep shale gas horizontal wells in Luzhou Block[J]. Petroleum Drilling Techniques, 2023, 51(1): 16–21.
    [11]
    孙欢,朱明明,王伟良,等. 长庆页岩油水平井华H90-3井超长水平段防漏堵漏技术[J]. 石油钻探技术,2022,50(2):16–21.

    SUN Huan, ZHU Mingming, WANG Weiliang, et al. Lost circulation prevention and plugging technologies for the ultra-long horizontal section of the horizontal shale oil Well Hua H90-3 in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 16–21.
    [12]
    杨勇,罗鸣,韩成,等. 国内外大裂缝、溶洞性复杂地层堵漏技术进展[J]. 化学工程与装备,2018(8):282–284.

    YANG Yong, LUO Ming, HAN Cheng, et al. Progress in plugging technology for large fractures and complex cavernous formations at home and abroad[J]. Chemical Engineering & Equipment, 2018(8): 282–284.
    [13]
    陈家骏. 聚氨酯堵漏及注浆加固技术在沉管修理中的应用[J]. 城市道桥与防洪,2006(1):151–153. doi: 10.3969/j.issn.1009-7716.2006.01.053

    CHEN Jiajun. Application of leakage filling by polyurethane and grouting consolidation technology in repair of sunk pipe[J]. Urban Roads Bridges & Flood Control, 2006(1): 151–153. doi: 10.3969/j.issn.1009-7716.2006.01.053
    [14]
    陈立来,孔子文,陆俊,等. 低聚物二醇和二异氰酸酯对水性聚氨酯性能的影响[J]. 聚氨酯工业,2021,36(3):48–50.

    CHEN Lilai, KONG Ziwen, LU Jun, et al. The effects of oligomer diols and diisocyanates on the properties of WPU[J]. Polyurethane Industry, 2021, 36(3): 48–50.
    [15]
    李亚萍,隋智慧,闫晨,等. 生物质改性水性聚氨酯研究进展[J]. 聚氨酯工业,2021,36(3):4–7.

    LI Yaping, SUI Zhihui, YAN Chen, et al. Research progress of biomass modified waterborne polyurethane[J]. Polyurethane Industry, 2021, 36(3): 4–7.
    [16]
    崔淑芹,王丹,商士斌,等. 生物质改性水性聚氨酯的研究进展[J]. 材料导报,2021,36(3):4–7.

    CUI Shuqin, WANG Dan, SHANG Shibin, et al. Research progress of waterborne polyurethane modified by biomass[J]. Polyurethane Industry, 2021, 36(3): 4–7.
    [17]
    刘凯,葛源广,谢贵堂,等. 水性聚氨酯改性研究进展[J]. 化工新型材料,2021,49(7):200–203.

    LIU Kai, GE Yuanguang, XIE Guitang, et al. Research progress on modification of waterborne polyurethane[J]. New Chemical Materials, 2021, 49(7): 200–203.
    [18]
    李亚萍,隋智慧,王旭,等. 纳米粒子改性水性聚氨酯复合材料研究进展[J]. 化工新型材料,2021,49(6):1–5.

    LI Yaping, SUI Zhihui, WANG Xu, et al. Research progress on nanoparticles modified WPU composite[J]. New Chemical Materials, 2021, 49(6): 1–5.
    [19]
    张怀文,曲从锋,何海星,等. 昭通地区页岩气浅层大缝洞堵漏工具研制[J]. 天然气工业,2021,41(增刊 1):182–185.

    ZHANG Huaiwen, QU Congfeng, HE Haixing, et al. Development of plugging tool for shallow large fracture and cave of shale gas in Zhaotong Area[J]. Natural Gas Industry, 2021, 41(supplement 1): 182–185.
    [20]
    范钢,张宏刚,李前贵. 新型堵漏工具:拦截式堵漏工具的研究[J]. 探矿工程(岩土钻掘工程),2012,39(2):42–44.

    FAN Gang, ZHANG Honggang, LI Qiangui. Research on a novel lost circulation control tool: intercepting lost circulation control tool[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2012, 39(2): 42–44.
    [21]
    陈勇. 拦截式堵漏工具研发现状及进展[J]. 西部探矿工程,2021,33(9):29–31.

    CHEN Yong. Research and development status and progress of intercepting plugging tools[J]. West-China Exploration Engineering, 2021, 33(9): 29–31.
    [22]
    赵鑫. 一种聚醚多元醇及其制备的聚氨酯防水灌浆料研究[J]. 化学推进剂与高分子材料,2021,19(3):46–51.

    ZHAO Xin. Study on a kind of polyether polyol and polyurethane waterproof grouting material prepared with it[J]. Chemical Propellants & Polymeric Materials, 2021, 19(3): 46–51.
    [23]
    张茜,吴明跃,胡相明. 催化剂对聚氨酯/水玻璃灌浆材料力学性能的影响[J]. 矿业研究与开发,2019,39(10):31–36.

    ZHANG Qian, WU Mingyue, HU Xiangming. The effect of catalyst on mechanical properties of polyurethane/water glass grouting materials[J]. Mining Research and Development, 2019, 39(10): 31–36.
  • Cited by

    Periodical cited type(8)

    1. 刘亮,涂福洪,郑海刚,郭亮,邢帅,王莹. 大港油田人工岛单筒双井钻完井关键技术. 西部探矿工程. 2022(07): 70-73 .
    2. 李琪,刘毅,王六鹏,高云文,张燕娜,张明. 密集井网直井段井眼轨道交碰风险计算新方法. 石油钻采工艺. 2021(01): 29-33 .
    3. 王高杰,王瑜,赵永光. 无明火低热辐射点火筒设计与应用. 钻采工艺. 2021(02): 29-32 .
    4. 王建龙,许京国,杜强,金海峰,程东,郑锋,李瑞明. 大港油田埕海2-2人工岛钻井提速提效关键技术. 石油机械. 2019(07): 30-35 .
    5. 王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 . 本站查看
    6. 许军富,徐文浩,耿应春. 渤海人工岛大型丛式井组加密防碰优化设计技术. 石油钻探技术. 2018(02): 24-29 . 本站查看
    7. 王波,王旭,邢志谦,苑宗领,李士杰. 冀东油田人工端岛大位移井钻井完井技术. 石油钻探技术. 2018(04): 42-46 . 本站查看
    8. 赵少伟,徐东升,王菲菲,罗曼,李振坤,刘杰. 渤海油田丛式井网整体加密钻井防碰技术. 石油钻采工艺. 2018(S1): 112-114 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (171) PDF downloads (80) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return