WANG Minsheng. Development direction and suggestions for carbon emission reduction during drilling and completion [J]. Petroleum Drilling Techniques,2022, 50(6):1-6. DOI: 10.11911/syztjs.2022106
Citation: WANG Minsheng. Development direction and suggestions for carbon emission reduction during drilling and completion [J]. Petroleum Drilling Techniques,2022, 50(6):1-6. DOI: 10.11911/syztjs.2022106

Development Direction and Suggestions for Carbon EmissionReduction during Drilling and Completion

More Information
  • Received Date: August 24, 2022
  • Revised Date: September 28, 2022
  • Available Online: November 06, 2022
  • As the main carbon emission stage of oil & gas exploration and development, drilling and completion are important fields for achieving net zero emission. In this paper, the carbon emission footprint of the whole oil & gas industry chain and the trend of mitigating carbon emission of major oil service companies were summarized, and the development direction for carbon emission reduction during drilling and completion was analyzed. Specifically, it is necessary to upgrade the power system of drilling rigs and fracturing pump trucks, improve the automation level of equipment power management, strengthen the application of energy storage technology in drilling and completion, promote automatic drilling and completion and remote decision-making systems, and explore the coupling between drilling and completion and marine new energy,etc. Then, suggestions for carbon emission reduction during drilling and completion were proposed based on the carbon peak and carbon neutralization targets of China and oil & gas enterprises, as well as the technical level of drilling and completion. The suggestions include focusing on the carbon emission footprint of oil & gas exploration and development, strengthening the carbon emission management and promoting the low-carbon transformation during the whole drilling and completion process, improving the efficiency of drilling and completion, and exploring the utilization of marine new energy.As a result, these suggestions are of great significance to accelerate the carbon emission reduction of drilling and completion and meet China’s commitment to low-carbon transformation.

  • [1]
    邹才能,熊波,薛华庆,等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发,2021,48(2):411–420.

    ZOU Caineng, XIONG Bo, XUE Huaqing, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 411–420.
    [2]
    王敏生,姚云飞. 碳中和约束下油气行业发展形势及应对策略[J]. 石油钻探技术,2021,49(5):1–6.

    WANG Minsheng, YAO Yunfei. Development situation and countermeasures of the oil and gas industry facing the challenge of carbon neutrality[J]. Petroleum Drilling Techniques, 2021, 49(5): 1–6.
    [3]
    刘殊呈,粟科华,李伟,等. 油气上游业务温室气体排放现状与碳中和路径分析[J]. 国际石油经济,2021,29(11):22–33.

    LIU Shucheng, SU Kehua, LI Wei, et al. Greenhouse gas emission status of oil and gas upstream business and analysis on carbon neutrality path[J]. International Petroleum Economics, 2021, 29(11): 22–33.
    [4]
    BP. Statistical review of world energy[EB/OL]. [2021-10-18]. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html.
    [5]
    BECK C, RASHIDBEIGI S, ROELOFSEN O, et al. The future is now: how oil and gas companies can decarbonize[EB/OL]. (2020-01-07)[2021-10-18]. https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-future-is-now-how-oil-and-gas-companies-can-decarbonize.
    [6]
    曾涛,袁园. 斯伦贝谢公司适应能源转型的措施与启示[J]. 国际石油经济,2022,30(3):36–43. doi: 10.3969/j.issn.1004-7298.2022.03.005

    ZENG Tao, YUAN Yuan. Schlumberger’s measures adapting to energy transition and related inspiration[J]. International Petroleum Economics, 2022, 30(3): 36–43. doi: 10.3969/j.issn.1004-7298.2022.03.005
    [7]
    丁根. 国际油服公司碳捕集、利用与封存业务的现状与展望[J]. 世界石油工业,2022,29(4):28–33.

    DING Gen. Current situation and prospects of carbon capture, utilization and sequestration business of international oilfield services companies[J]. World Petroleum Industry, 2022, 29(4): 28–33.
    [8]
    MCCULLOUGH D. Decarbonizing with digital: Improving drilling and well construction performance, sustainably[EB/OL]. (2021-09-24) [2021-10-18]. https://www.worldoil.com/magazine/2021/september-2021/features/decarbonizing-with-digital-improving-drilling-and-well-construction-performance-sustainably.
    [9]
    Baker Hughes. Our strategy[EB/OL]. [2022-05-31]. https://www.bakerhughes.com/company/2021-digitalannual-report/our-strategy.
    [10]
    BAKER HUGHES. Carbon capture, utilization and storage policy statement[EB/OL]. (2021-01-15) [2022-05-31]. https://www.bakerhughes.com/sites/bakerhughes/files/2021 − 03/2021 − 01%20Baker%20Hughes%20CCUS%20Policy%20-%20Final%20-%2001152021_0.pdf.
    [11]
    EYGUN C, BELGAROUI J, WU Yang, et al. Mitigating shale gas developments carbon footprint: evaluating and implementing solutions in argentina[R]. URTEC 2687987, 2017.
    [12]
    SEYBOLD E, GOSWICK S, KING G E, et al. Evolution of dual fuel pressure pumping for fracturing: methods, economics, field trial results and improvements in availability of fuel[R]. SPE 166443, 2013.
    [13]
    FEDER J. E-fleet: electric-powered fleets herald a new future, but it won’t happen overnight[J]. Journal of Petroleum Technology, 2021, 73(10): 23–26. doi: 10.2118/1021-0023-JPT
    [14]
    OEHRING J M. Environmental benefits of electric powered hydraulic fracturing[R]. SPE 177308, 2015.
    [15]
    HOPKINS D, FOX I, MOLEN D. Gas powered engines with energy storage-a game changer in land drilling[R]. SPE 199671, 2020.
    [16]
    PATTERSON-UTI. Air quality, greenhouse gas emissions reduction and energy efficiency[EB/OL]. [2022 -05-31]. https://esg.patenergy.com/Environmental/Air-Quality-Emissions-and-Energy/.
    [17]
    WHITFIELD S. Automation-enabled fuel efficiency leads onshore drilling ESG[J]. Drilling Contractor, 2021, 77(5): 20–25.
    [18]
    VERHOEF R. Solutions for reduced carbon emissions and advances in power generation[R]. IPTC 22539, 2022.
    [19]
    SETTEMSDAL S. Applications of lithium-ion batteries in offshore oil & gas: The journey to building a low-emissions drilling rig[R]. OTC 30923, 2021.
    [20]
    WHITFIELD S. Zero-emission power-generation system in development for land rigs using hydrogen fuel cells[J]. Drilling Contractor, 2022, 78(5): 20–21.
    [21]
    BILGIN M, DONEN J, SCAINI V, et al. World’s first hybrid drilling rig[R]. SPE 199573, 2020.
    [22]
    WHITFIELD S. ‘Green’ innovations flourish amid drive for lower emissions[J]. Drilling Contractor, 2021, 77(5): 12–19.
    [23]
    YATES M R, BRAHIM I B, ALNOFAILY S M, et al. Sustaining remote operations adoption post pandemic: A major key to a net zero future[R]. SPE 205440, 2021.
    [24]
    MATHUR R K, MACPHERSON J, KRUEGER S, et al. A step change in drilling efficiency using remote operations[R]. OTC 30890, 2020.
    [25]
    闫娜,李庆. 贝克休斯远程作业发展历程及启示[J]. 石油科技论坛,2021,40(5):79–84. doi: 10.3969/j.issn.1002-302x.2021.05.011

    YAN Na, LI Qing. Development process and enlightenment of Baker Hughes remote services[J]. Petroleum Science and Technology Forum, 2021, 40(5): 79–84. doi: 10.3969/j.issn.1002-302x.2021.05.011
    [26]
    SETTEMSDAL S O. Applying energy storage solutions ESS in offshore oil and gas to reduce emissions and costs[R]. SPE 195777, 2019.
    [27]
    Anon. Floating wind, hydrogen proposal aims to accelerate decarbonization of UK offshore oil and gas assets[J]. Drilling Contractor, 2021, 77(4): 13.
  • Related Articles

    [1]LI Tao, SU Qiang, YANG Zhe, XU Weiqiang, HU Xihui. Current Practices and Research Directions for Drilling and Completion Technologies for Ultra-Deep Wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7-15. DOI: 10.11911/syztjs.2022028
    [2]WANG Xingyuan, LU Dengyun, YUAN Zhiping. Borehole Strengthening Technology with Oil-Based Drilling Fluid in the Western Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 34-40. DOI: 10.11911/syztjs.2020116
    [3]ZENG Bo, WANG Xinghao, HUANG Haoyong, ZHANG Nanqiao, YUE Wenhan, DENG Qi. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073
    [4]LUO Han, HE Shiming, LUO Deming. Ultra-High Temperature and High Pressure Liner Cementing Technology in Well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4): 17-21. DOI: 10.11911/syztjs.2019094
    [5]YE Jinlong, SHEN Jianwen, WU Yujun, DU Zhenghong, SUI Sheng, LI Lin. Key Techniques of Drilling Penetration Rate Improvement in Ultra-Deep Well Chuanshen-1[J]. Petroleum Drilling Techniques, 2019, 47(3): 121-126. DOI: 10.11911/syztjs.2019056
    [6]GAO Shuyang, DOU Ninghui, LIN Yongxue, CHAI Long, LIU Rui. A New Method for Evaluating the Characteristics of Hydration in the Longmaxi Shale Gas Reservoir in Sichuan-Chongqing Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 20-26. DOI: 10.11911/syztjs.2018089
    [7]Zhao Lei. Cable Conveying and Releasing Logging Meter in Complicated Horizontal Wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2015, 43(6): 66-69. DOI: 10.11911/syztjs.201506012
    [8]Sun Kunzhong, Liu Jiangtao, Wang Wei, Li Yongjie, Qin Liming. Geosteering Drilling Techniques of Horizontal Sidetracking Well JA, Southeast Sichuan[J]. Petroleum Drilling Techniques, 2015, 43(4): 138-142. DOI: 10.11911/syztjs.201504025
    [9]Zhou Chengxiang, Zhou Yucang, Li Shuangming, Hu Yuanyuan. Fracturing Pressure Reducing Technique for Shale Gas Well in the Southeastern Sichuan[J]. Petroleum Drilling Techniques, 2014, 42(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2014.04.008
    [10]Cao Yang, Chen Chen, Shi Xuezhi, Xiong Xindong, Qiao Zhiguo. Multi-Stage Fracturing Techniques for Open Hole Horizontal Wells in Western Sichuan Tight Gas Reservoirs[J]. Petroleum Drilling Techniques, 2012, 40(3): 13-17. DOI: 10.3969/j.issn.1001-0890.2012.03.003
  • Cited by

    Periodical cited type(13)

    1. 王建龙,马凯,贾巍然,韩自立,柳鹤,李萍. 深层页岩气水平井优快钻井配套技术. 西部探矿工程. 2023(10): 76-79 .
    2. 张晓明,陈金,聂建华,周婷. 黔北地区正安区块页岩气水平井钻井关键技术. 山东石油化工学院学报. 2023(04): 53-58 .
    3. 王建龙,祝钰明,柳鹤,刘轩,郑锋,韩自立,吴墨染. 典型振动减阻工具研究进展及展望. 西部探矿工程. 2022(01): 68-70+75 .
    4. 谭天宇,邱爱民,汤继华,李浩,席佳男,霍丽芬. 吉兰泰油田吉华1区块超浅层水平井钻井关键技术. 石油钻探技术. 2021(06): 37-41 . 本站查看
    5. 王建龙,于志强,苑卓,冯冠雄,柳鹤,郭云鹏. 四川盆地泸州区块深层页岩气水平井钻井关键技术. 石油钻探技术. 2021(06): 17-22 . 本站查看
    6. 王建龙,冯冠雄,吴嘉澍,叶顺友,张洪虎,郭瑞. 长宁页岩气钻井提速提效难点与对策分析. 西部探矿工程. 2020(10): 70-72 .
    7. 王建龙,冯冠雄,刘学松,郭瑞,高学生,霍阳. 长宁页岩气超长水平段水平井钻井完井关键技术. 石油钻探技术. 2020(05): 9-14 . 本站查看
    8. 王建龙,徐旺,郭耀,程东,王波,杨振荣,陈祖红. 苏里格气田苏25区块水平井钻井关键技术. 长江大学学报(自然科学版). 2019(07): 26-30+44+2-3 .
    9. 王建龙,许京国,杜强,金海峰,程东,郑锋,李瑞明. 大港油田埕海2-2人工岛钻井提速提效关键技术. 石油机械. 2019(07): 30-35 .
    10. 单晓伟. 液压振动下击器的研究与应用. 断块油气田. 2019(04): 541-544 .
    11. 赵传伟,裴学良,马莉,张辉,兰恭涛,朱长勇. 基于附壁效应的水力振动工具研制. 断块油气田. 2019(05): 670-674 .
    12. 王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 . 本站查看
    13. 王甲昌,张海平,张仁龙,玄令超. 旋冲螺杆钻具在临盘油田的试验应用. 探矿工程(岩土钻掘工程). 2019(12): 44-49 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (572) PDF downloads (192) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return