Citation: | ZENG Bo, WANG Xinghao, HUANG Haoyong, ZHANG Nanqiao, YUE Wenhan, DENG Qi. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073 |
[1] |
董大忠,施振生,管全中,等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4): 67–76. doi: 10.3787/j.issn.1000-0976.2018.04.008
DONG Dazhong, SHI Zhensheng, GUAN Quanzhong, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng–Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67–76. doi: 10.3787/j.issn.1000-0976.2018.04.008
|
[2] |
伍贤柱. 四川盆地威远页岩气藏高效开发关键技术[J]. 石油钻探技术, 2019, 47(4): 1–9. doi: 10.11911/syztjs.2019074
WU Xianzhu. Key technologies in the efficient development of the Weiyuan shale gas reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1–9. doi: 10.11911/syztjs.2019074
|
[3] |
马新华,谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161–169.
MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in Southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161–169.
|
[4] |
冯国强,赵立强,卞晓冰,等. 深层页岩气水平井多尺度裂缝压裂技术[J]. 石油钻探技术, 2017, 45(6): 77–82.
FENG Guoqiang, ZHAO Liqiang, BIAN Xiaobing, et al. Multi-scale hydraulic fracturing of horizontal wells in deep shale gas plays[J]. Petroleum Drilling Techniques, 2017, 45(6): 77–82.
|
[5] |
吴奇,胥云,王腾飞,等. 增产改造理念的重大变革:体积改造技术概论[J]. 天然气工业, 2011, 31(4): 7–12. doi: 10.3787/j.issn.1000-0976.2011.04.002
WU Qi, XU Yun, WANG Tengfei, et al. The revolution of reservoir stimulation: an introduction of volume fracturing[J]. Natural Gas Industry, 2011, 31(4): 7–12. doi: 10.3787/j.issn.1000-0976.2011.04.002
|
[6] |
吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术:内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352–358.
WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352–358.
|
[7] |
曾顺鹏,张国强,韩家新,等. 多裂缝应力阴影效应模型及水平井分段压裂优化设计[J]. 天然气工业, 2015, 35(3): 55–59. doi: 10.3787/j.issn.1000-0976.2015.03.008
ZENG Shunpeng, ZHANG Guoqiang, HAN Jiaxin, et al. Model of multi-fracture stress shadow effect and optimization design for staged fracturing of horizontal wells[J]. Natural Gas Industry, 2015, 35(3): 55–59. doi: 10.3787/j.issn.1000-0976.2015.03.008
|
[8] |
NAGEL N, ZHANG F, SANCHEZ-NAGEL M, et al. Stress shadow evaluations for completion design in unconventional plays[R]. SPE 167128, 2013.
|
[9] |
邓燕,尹建,郭建春. 水平井多段压裂应力场计算新模型[J]. 岩土力学, 2015, 36(3): 660–666.
DENG Yan, YIN Jian, GUO Jianchun. A new calculation model for stress field due to horizontal well staged fracturing[J]. Rock and Soil Mechanics, 2015, 36(3): 660–666.
|
[10] |
吴奇,胥云,张守良,等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4): 706–714. doi: 10.7623/syxb201404011
WU Qi, XU Yun, ZHANG Shouliang, et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(4): 706–714. doi: 10.7623/syxb201404011
|
[11] |
CADOTTE R J, WHITSETT A, SORRELL M, et al. Modern completion optimization in the Haynesville Shale[J]. SPE 187315, 2017.
|
[12] |
付永强,马发明,曾立新,等. 页岩气藏储层压裂实验评价关键技术[J]. 天然气工业, 2011, 31(4): 51–54. doi: 10.3787/j.issn.1000-0976.2011.04.012
FU Yongqiang, MA Faming, ZENG Lixin, et al. Key techniques of experimental evaluation in the fracturing treatment for shale gas reservoirs[J]. Natural Gas Industry, 2011, 31(4): 51–54. doi: 10.3787/j.issn.1000-0976.2011.04.012
|
[13] |
杨建,付永强,陈鸿飞,等. 页岩储层的岩石力学特性[J]. 天然气工业, 2012, 32(7): 12–14. doi: 10.3787/j.issn.1000-0976.2012.07.003
YANG Jian, FU Yongqiang, CHEN Hongfei, et al. Rock mechanical characteristics of shale reserviors[J]. Natural Gas Industry, 2012, 32(7): 12–14. doi: 10.3787/j.issn.1000-0976.2012.07.003
|
[14] |
李勇明,陈曦宇,赵金洲,等. 射孔孔眼磨蚀对分段压裂裂缝扩展的影响[J]. 天然气工业, 2017, 37(7): 52–59. doi: 10.3787/j.issn.1000-0976.2017.07.008
LI Yongming, CHEN Xiyu, ZHAO Jinzhou, et al. Influence of perforation erosion on multiple growing hydraulic fractures in multi-stage fracturing[J]. Natural Gas Industry, 2017, 37(7): 52–59. doi: 10.3787/j.issn.1000-0976.2017.07.008
|
[15] |
谢军. 关键技术进步促进页岩气产业快速发展:以长宁—威远国家级页岩气示范区为例[J]. 天然气工业, 2017, 37(12): 1–10. doi: 10.3787/j.issn.1000-0976.2017.12.001
XIE Jun. Rapid shale gas development accelerated by the progress in key technologies: a case study of the Changning–Weiyuan National Shale Gas Demonstration Zone[J]. Natural Gas Industry, 2017, 37(12): 1–10. doi: 10.3787/j.issn.1000-0976.2017.12.001
|
[16] |
刘厚彬,孟英峰,李皋,等. 泥页岩水化作用对岩石强度的影响[J]. 钻采工艺, 2010, 33(6): 18–20.
LIU Houbin, MENG Yingfeng, LI Gao, et al. Theoretical simulation and experimental evaluation of the effect of hydration on the shale rock strength[J]. Drilling & Production Technology, 2010, 33(6): 18–20.
|
[17] |
陈铭,张士诚,柳明,等. 水力压裂支撑剂嵌入深度计算方法[J]. 石油勘探与开发, 2018, 45(1): 149–156.
CHEN Ming, ZHANG Shicheng, LIU Ming, et al. Calculation method of proppant embedment depth in hydraulic fracturing[J]. Petroleum Exploration and Development, 2018, 45(1): 149–156.
|