TAN Tianyu, QIU Aimin, TANG Jihua, LI Hao, XI Jia’nan, HUO Lifen. Key Drilling Technologies for Ultra-Shallow Horizontal Wells in the Jihua-1 Block of Jilantai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(6): 37-41. DOI: 10.11911/syztjs.2021038
Citation: TAN Tianyu, QIU Aimin, TANG Jihua, LI Hao, XI Jia’nan, HUO Lifen. Key Drilling Technologies for Ultra-Shallow Horizontal Wells in the Jihua-1 Block of Jilantai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(6): 37-41. DOI: 10.11911/syztjs.2021038

Key Drilling Technologies for Ultra-Shallow Horizontal Wells in the Jihua-1 Block of Jilantai Oilfield

More Information
  • Received Date: August 31, 2020
  • Revised Date: February 20, 2021
  • Available Online: June 30, 2021
  • During the drilling of ultra-shallow horizontal wells in the Jihua-1 Block of Jilantai Oilfield, some problems were encountered due to the soft Cretaceous strata in the upper part and the high hardness, poor drillability and strong heterogeneity of the gneiss strata in the lower part. In these wells, the build up rate can not be guaranteed, the drilling cycle is long, the horizontal sections are difficult to extend in hard strata, and the later completion casings are hard to run safely. In the light of this, the drilling technologies for ultra-shallow horizontal wells were studied. Considering the geological characteristics of this region, the rock mechanics parameters of gneiss were adopted in simulation and the casing program was optimized. A customized PDC bit was designed and the bottomhole assembly and speed-up tools were optimized. In addition, supporting technologies such as float casing running and environmentally friendly low-solid drilling fluid which would effectively protect the reservoir were integrated. Thus, key drilling technologies were formed for ultra-shallow horizontal wells in the Jihua-1 Block of Jilantai Oilfield. They were applied to four wells in the field with no downhole complexity occurred, suggesting good well completion results. These technologies can provide technical support for the future development of horizontal wells in this block.
  • [1]
    全晓虎,蒋官澄,吕传炳,等. 双疏型储层保护技术在吉兰泰油田的应用[J]. 钻井液与完井液,2020,37(3):306–312.

    QUAN Xiaohu, JIANG Guancheng, LYU Chuanbing, et al. Reservoir protection with double hydrophobic agent in Jilantai Oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 306–312.
    [2]
    杨德相,屈争辉,陈树光,等. 河套盆地吉兰泰凹陷中生代构造层划分及意义[J]. 高校地质学报,2020,26(6):691–703.

    YANG Dexiang,QU Zhenghui,CHEN Shuguang, et al. Determination of mesozoic tectostratigraphic units and its significance in Jilantai Sag, Hetao Basin[J]. Geological Journal of China Universities, 2020, 26(6): 691–703.
    [3]
    李云峰,徐吉,徐小峰,等. 南堡2号构造深层潜山水平井钻井完井技术[J]. 石油钻探技术,2018,46(2):10–16.

    LI Yunfeng, XU Ji, XU Xiaofeng, et al. Drilling and completion techniques for horizontal wells in the deep buried hills of the Nanpu No. 2 structure[J]. Petroleum Drilling Techniques, 2018, 46(2): 10–16.
    [4]
    李伟峰,于小龙. 延长东部超浅层大位移水平井钻井技术难点与对策[J]. 非常规油气,2017,4(1):100–103, 83. doi: 10.3969/j.issn.2095-8471.2017.01.017

    LI Weifeng, YU Xiaolong. The ultra-shallow large displacement horizontal well drilling difficulty and solution in Yan-chang East Oilfield[J]. Unconventional Oil & Gas, 2017, 4(1): 100–103, 83. doi: 10.3969/j.issn.2095-8471.2017.01.017
    [5]
    刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用[J]. 石油钻探技术,2018,46(5):35–39.

    LIU Yonggui. Optimization and application of high performance water-based drilling fluid for horizontal wells in Daqing tight oil reservoir[J]. Petroleum Drilling Techniques, 2018, 46(5): 35–39.
    [6]
    李维,李黔. 大位移水平井下套管漂浮接箍安放位置优化分析[J]. 石油钻探技术,2009,37(3):53–56. doi: 10.3969/j.issn.1001-0890.2009.03.013

    LI Wei, LI Qian. Optimization of float collar position in extended reach wells[J]. Petroleum Drilling Techniques, 2009, 37(3): 53–56. doi: 10.3969/j.issn.1001-0890.2009.03.013
    [7]
    陶红胜,王涛,于小龙,等. 延长石油浅层大位移水平井固井技术[J]. 石油矿场机械,2015,44(6):17–20.

    TAO Hongsheng, WANG Tao, YU Xiaolong, et al. Cement of shallow extended reach horizontal well in Yanchang Oilfield[J]. Oil Field Equipment, 2015, 44(6): 17–20.
    [8]
    王同友,王永松,张黎明,等. 大位移延伸井固井技术[J]. 石油钻采工艺,2001,23(2):18–21. doi: 10.3969/j.issn.1000-7393.2001.02.006

    WANG Tongyou, WANG Yongsong, ZHANG Liming, et al. Cementing technology of extended reach well[J]. Oil Drilling & Production Technology, 2001, 23(2): 18–21. doi: 10.3969/j.issn.1000-7393.2001.02.006
    [9]
    徐建飞,赵晓波. 硬地层定向 PDC 钻头个性化设计与应用[J]. 金刚石与磨料磨具工程,2014,34(3):57–61, 66.

    XU Jianfei, ZHAO Xiaobo. Design and application of directional PDC bit in hard formation[J]. Diamond & Abrasives Engineering, 2014, 34(3): 57–61, 66.
    [10]
    王建龙,郑锋,刘学松,等. 井眼清洁工具研究进展及展望[J]. 石油机械,2018,46(9):18–23.

    WANG Jianlong, ZHENG Feng, LIU Xuesong, et al. Advances and prospects of well cleaning tools[J]. China Petroleum Machinery, 2018, 46(9): 18–23.
    [11]
    冯强,陈世春,王建龙,等. 振动减摩阻工具振动参数及安放位置研究[J]. 石油钻探技术,2018,46(4):78–83.

    FENG Qiang, CHEN Shichun, WANG Jianlong, et al. Research on vibration parameters and determining the position of a vibration friction reducing tool[J]. Petroleum Drilling Techniques, 2018, 46(4): 78–83.
    [12]
    王建龙,张展豪,冯强,等. 水力振荡器与液力推力器集成应用研究[J]. 石油机械,2017,45(4):44–47.

    WANG Jianlong, ZHANG Zhanhao, FENG Qiang, et al. Study on the integrated application of hydraulic oscillator and hydraulic thruster[J]. China Petroleum Machinery, 2017, 45(4): 44–47.
  • Cited by

    Periodical cited type(20)

    1. 胡月,魏文澜,李玉强,樊雪儿,程嘉瑞. 基于数字孪生的天然气井多源数据融合温度场分析. 机电工程技术. 2025(01): 102-107 .
    2. 杨传书,王敏生,李昌盛,张洪宝,吴建军,付宣,袁多. 中国石化钻井工程决策支持系统进展及展望. 钻采工艺. 2025(01): 55-62 .
    3. 秦永和,王鹏,曹江娜,张治发,钱浩东. 人工智能技术在工程作业智能支持系统中的应用. 钻采工艺. 2025(01): 70-77 .
    4. 李辉,陆永钢,刘得军,郝振华. 基于故障相关性的随钻方位电磁波测井仪器可靠性失效建模研究. 地球物理学报. 2025(02): 759-767 .
    5. 林伯韬,朱海涛,金衍,张家豪,韩雪银. 油气钻采数字孪生模型构建方法及应用案例. 石油科学通报. 2024(02): 282-296 .
    6. 光新军,李婧,闫娜,赵汩凡,马广军,张承先,王立双. 基于专利分析的智慧油气藏数字孪生技术发展态势及建议. 石油科技论坛. 2024(02): 83-94 .
    7. 王志远,梁沛智,陈科杉,仉志,张剑波,孙宝江. 深部地层智能压井多解性分析与优化策略. 石油钻探技术. 2024(02): 136-145 . 本站查看
    8. 王贺强,郭海涛,马翠岩,王子毓,陈友军,李斌,梁毅. 智能钻井系统在赵东油田的应用. 世界石油工业. 2024(03): 59-67 .
    9. 韦龙贵,张伟国,罗黎敏,杜威,雷磊,王哲,罗源. 数字化井控技术研究现状及发展趋势. 钻采工艺. 2024(04): 86-93 .
    10. 罗园. 基于数字孪生的油气井井喷失控抢险技术研究. 钻采工艺. 2024(04): 80-85 .
    11. 张菲菲,王茜,王学迎,余义兵,娄文强,彭冯佳. 油气井工程多源多模态数据融合技术与展望. 天然气工业. 2024(09): 152-166 .
    12. 冯定,王健刚,张红,孙巧雷,侯灵霞,苗恩铭. 数字孪生技术在油气钻完井工程中的应用与思考. 石油钻探技术. 2024(05): 26-34 . 本站查看
    13. 王钧泽,李黔,尹虎. 基于数字孪生技术的钻井复杂风险智能预警系统架构. 石油钻探技术. 2024(05): 154-162 . 本站查看
    14. 宋先知,李根生,祝兆鹏,马宝东,张子悦. 钻井数字孪生技术研究现状及发展趋势. 石油钻探技术. 2024(05): 10-19+171 . 本站查看
    15. 景明,王增祥. 数字孪生技术在实物地质资料工作中的应用场景探索. 中国矿业. 2024(S2): 145-148 .
    16. 董昌明,王子韵,谢华荣,徐广珺,韩国庆,周书逸,谢文鸿,沈向宇,韩磊. 人工智能海洋学发展前景. 海洋学研究. 2024(03): 2-27 .
    17. 吴玉林,姜莹,程光华,马佳,钱育蓉. 基于一维卷积神经网络的钻井周期预测. 断块油气田. 2023(03): 495-504 .
    18. 张好林,杨传书,李昌盛,王果,段继男. 钻井数字孪生系统设计与研发实践. 石油钻探技术. 2023(03): 58-65 . 本站查看
    19. 李伟,叶鸥,刘辉,黄天尘. 基于数字孪生技术的大型煤矿远程智能监控研究. 计算机测量与控制. 2023(11): 204-211 .
    20. 赵玲,王子贤,王晓晖,常丽娟,黄美晨,刘芳,田枫. 数字孪生在智慧生活应用中的关键技术及前景分析. 系统仿真技术. 2023(04): 369-382 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (583) PDF downloads (145) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return