Citation: | ZHOU Bocheng, XIONG Wei, LAI Jianlin, FANG Qilong. Low-Cost Fracturing Technology in Normal-Pressure Shale Gas Reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80-85. DOI: 10.11911/syztjs.2022011 |
Normal-pressure shale reservoirs in Wulong Block have low energy and production, and suffer from difficulties in beneficial development. For this reason, a low-cost fracturing technology was studied for its development. Considering difficulties of fracturing stimulation in Wulong Block, induced stress calculation, fracture simulation, and fracturing cost comparisons were carried out. This allowed the fracturing stage length, number of clusters, and operation parameters to be optimized. Further, the fracturing materials and equipment were chosen. A new fracturing technology was thereby developed, involving a short fracturing stage length, a single-cluster sleeve, low-viscosity slick water, low-cost quartz sand, continuous sand addition at a high proppant concentration, which was then applied in the field test on Well A in Wulong Block. Through the application of the unlimited sliding sleeve completion and the real-time adjustment of on-site fracturing parameters, the production of Well A after fracturing was comparable to that of the fracturing well on the same platform with fracturing parameters of a medium fracturing stage length, tight cluster spacing, and ceramic proppants. In this study, the fracturing cost was reduced by 52.8%, and the fracturing performance sped up to 8 stages per day. The low-cost fracturing technology has provided technical reference for the beneficial development of normal-pressure shale gas in Wulong Block.
[1] |
聂海宽,汪虎,何治亮,等. 常压页岩气形成机制、分布规律及勘探前景:以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报,2019,40(2):131–143. doi: 10.7623/syxb201902001
NIE Haikuan, WANG Hu, HE Zhiliang, et al. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: a case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2019, 40(2): 131–143. doi: 10.7623/syxb201902001
|
[2] |
彭勇民,龙胜祥,何希鹏,等. 彭水地区常压页岩气储层特征及有利区评价[J]. 油气藏评价与开发,2020,10(5):12–19.
PENG Yongmin, LONG Shengxiang, HE Xipeng, et al. Characteristics of normal-pressure shale gas reservoirs and evaluation of its favorable areas in Pengshui[J]. Reservoir Evaluation and Development, 2020, 10(5): 12–19.
|
[3] |
方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发,2019,9(5):1–13. doi: 10.3969/j.issn.2095-1426.2019.05.001
FANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in Southern China[J]. Reservoir Evaluation and Development, 2019, 9(5): 1–13. doi: 10.3969/j.issn.2095-1426.2019.05.001
|
[4] |
蒋廷学,苏瑗,卞晓冰,等. 常压页岩气水平井低成本高密度缝网压裂技术研究[J]. 油气藏评价与开发,2019,9(5):78–83. doi: 10.3969/j.issn.2095-1426.2019.05.010
JIANG Tingxue, SU Yuan, BIAN Xiaobing, et al. Network fracturing technology with low cost and high density for normal pressure shale gas[J]. Reservoir Evaluation and Development, 2019, 9(5): 78–83. doi: 10.3969/j.issn.2095-1426.2019.05.010
|
[5] |
刘建坤,蒋廷学,卞晓冰,等. 常压页岩气低成本高效压裂技术对策[J]. 钻井液与完井液,2020,37(3):377–383. doi: 10.3969/j.issn.1001-5620.2020.03.019
LIU Jiankun, JIANG Tingxue, BIAN Xiaobing, et al. The countermeasure of low cost and high efficiency fracturing technology of normal pressure shale gas[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 377–383. doi: 10.3969/j.issn.1001-5620.2020.03.019
|
[6] |
夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96. doi: 10.11911/syztjs.2020065
XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96. doi: 10.11911/syztjs.2020065
|
[7] |
路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001
LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techni-ques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
|
[8] |
杨怀成,夏苏疆,高启国,等. 常压页岩气全电动压裂装备及技术示范应用效果分析[J]. 油气藏评价与开发,2021,11(3):348–355.
YANG Huaicheng, XIA Sujiang, GAO Qiguo, et al. Application effect of full-electric fracturing equipment and technology for normal pressure shale gas[J]. Reservoir Evaluation and Development, 2021, 11(3): 348–355.
|
[9] |
李庆辉,陈勉,金衍,等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报,2012,31(8):1680–1685.
LI Qinghui, CHEN Mian, JIN Yan, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1680–1685.
|
[10] |
GUO Tiankui, ZHANG Shicheng, QU Zhanqing, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel, 2014, 128: 373–380. doi: 10.1016/j.fuel.2014.03.029
|
[11] |
TAN Peng, JIN Yan, HAN Ke, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017, 206: 482–493. doi: 10.1016/j.fuel.2017.05.033
|
[12] |
FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale[R]. SPE 77441, 2002.
|
[13] |
GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treat-ments[J]. AAPG Bulletin, 2007, 91(4): 603–622. doi: 10.1306/11010606061
|
[14] |
CHENG Y. Impacts of the number of perforation clusters and cluster spacing on production performance of horizontal shale-gas wells[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(1): 31–40.
|
[15] |
潘林华,张士诚,程礼军,等. 水平井 “多段分簇” 压裂簇间干扰的数值模拟[J]. 天然气工业,2014,34(1):74–79. doi: 10.3787/j.issn.1000-0976.2014.01.011
PAN Linhua, ZHANG Shicheng, CHENG Lijun, et al. A numerical simulation of the inter-cluster interference in multi-cluster staged fracking for horizontal wells[J]. Natural Gas Industry, 2014, 34(1): 74–79. doi: 10.3787/j.issn.1000-0976.2014.01.011
|
[16] |
李勇明,陈曦宇,赵金洲,等. 水平井分段多簇压裂缝间干扰研究[J]. 西南石油大学学报(自然科学版),2016,38(1):76–83.
LI Yongming, CHEN Xiyu, ZHAO Jinzhou, et al. The effects of crack interaction in multi-stage horizontal fracturing[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(1): 76–83.
|
[17] |
FERGUSON K, THOMAS C, WELLHOEFER B, et al. Cementing sleeve fracture completion in eagle ford shale will forever change the delivery of hydraulic fracturing[R]. SPE 158490, 2012.
|
[18] |
STEGENT N A, FERGUSON K, SPENCER J. Comparison of fracture valves vs. plug-and-perforation completion in the oil segment of the eagle ford shale: a case study[J]. SPE Production & Operations, 2013, 28(2): 201–209.
|
[19] |
CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al. The relationship between fracture complexity, reservoir properties, and fracture-treatment design[J]. SPE Production & Operations, 2010, 25(4): 438–452.
|
[20] |
吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术:内涵、优化设计与实现[J]. 石油勘探与开发,2012,39(3):352–358.
WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352–358.
|
[21] |
FREDD C N, MCCONNELL S B, BONEY C L, et al. Experimental study of fracture conductivity for water-fracturing and conventional fracturing applications[J]. SPE Journal, 2001, 6(3): 288–298. doi: 10.2118/74138-PA
|
[22] |
夏海帮,包凯,王睿. 页岩气井用新型无限级全通径滑套压裂技术先导试验[J]. 油气藏评价与开发,2021,11(3):390–394.
XIA Haibang, BAO Kai, WANG Rui. Pilot test of new infinite stage and full-bore sliding sleeve fracturing technology in shale gas wells[J]. Reservoir Evaluation and Development, 2021, 11(3): 390–394.
|
1. |
王川,陈秋帆,夏勇. 海底泥浆举升钻井系统钻遇天然气水合物时的动态风险分析. 安全与环境学报. 2024(02): 479-487 .
![]() | |
2. |
翟诚,吴迪,秦冬冬. 天然气水合物注热分解诱发储层变形破坏的正交数值模拟研究. 特种油气藏. 2024(02): 112-119 .
![]() | |
3. |
刘芳,冯馨,孙皓宇,张旭辉. 水合物分解中深水基础抗拔性能模型试验研究. 防灾减灾工程学报. 2023(02): 359-365 .
![]() | |
4. |
贺保卫,马志宇,崔海朋,杜鹏. 基于Unity 3D的可燃冰开采环境监测模拟系统设计. 计算机应用与软件. 2023(08): 121-125+154 .
![]() | |
5. |
吴艳辉,代锐,张磊,朱志潜,高禹,刘楷,徐鹏,张雨. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法. 钻井液与完井液. 2023(04): 415-422 .
![]() | |
6. |
赵凯,李润森,冯永存,高伟,张振伟,窦亮彬,毕刚. 非均匀地应力场下水合物储层水平井井周塑性区分布. 中南大学学报(自然科学版). 2022(03): 952-962 .
![]() | |
7. |
王磊,杨进,李莅临,胡志强,柯珂,臧艳彬,孙挺. 深水含水合物地层钻井井口稳定性研究. 岩土工程学报. 2022(12): 2312-2318 .
![]() | |
8. |
王志刚,李小洋,张永彬,尹浩,胡晨,梁金强,黄伟. 海域非成岩天然气水合物储层改造方法分析. 钻探工程. 2021(06): 32-38 .
![]() | |
9. |
马永乐,张勇,刘晓栋,侯岳,杨金龙,宋本岭,刘涛,李荔. 海域天然气水合物低温抑制性钻井液体系. 钻井液与完井液. 2021(05): 544-551+559 .
![]() | |
10. |
王偲,谢文卫,张伟,陈靓,陈浩文. RMR技术在海域天然气水合物钻探中的适应性分析. 探矿工程(岩土钻掘工程). 2020(02): 17-23 .
![]() | |
11. |
史静怡,樊建春,武胜男,李磊. 深水井筒天然气水合物形成预测及风险评价. 油气储运. 2020(09): 988-996 .
![]() | |
12. |
李莅临,杨进,路保平,柯珂,王磊,陈柯锦. 深水水合物试采过程中地层沉降及井口稳定性研究. 石油钻探技术. 2020(05): 61-68 .
![]() | |
13. |
李子丰,韩杰. 海底天然气水合物开采的环境安全性探讨. 石油钻探技术. 2019(03): 127-132 .
![]() | |
14. |
李庆超,程远方,邵长春. 允许适度坍塌的水合物储层最低钻井液密度. 断块油气田. 2019(05): 657-661 .
![]() | |
15. |
牛洪波,于政廉,孙菁,徐加放. 天然气水合物动力学抑制剂与水分子相互作用研究. 石油钻探技术. 2019(04): 29-34 .
![]() | |
16. |
迟咏梅,徐松杰,曹玉廷,董坚. 新型两亲性聚酰胺的合成及性质. 应用化学. 2017(03): 269-275 .
![]() | |
17. |
庞维新,李清平,程艳,王炳明. 水合物堵塞治理工具和方法研究. 石油机械. 2016(03): 68-72 .
![]() | |
18. |
光新军,王敏生. 海洋天然气水合物试采关键技术. 石油钻探技术. 2016(05): 45-51 .
![]() | |
19. |
孙小辉,孙宝江,王志远,王金堂. 超临界CO_2钻井井筒水合物形成区域预测. 石油钻探技术. 2015(06): 13-19 .
![]() |