Citation: | LI Yan, HU Zhiqiang, XUE Yuzhi, LIANG Wenlong, TANG Wenquan, NIU Chengcheng. Key Drilling Technologies of Well Bin 4 under the Daily Rate System Management Mode[J]. Petroleum Drilling Techniques, 2022, 50(3): 34-38. DOI: 10.11911/syztjs.2021133 |
The daily rate system management mode highlights the leading role of Party A, thereby optimizing management procedures and and increasing the efficiency of completion operations. To promote the market-oriented operation of daily rate system management for drilling and completion, Sinopec selected Well Bin 4 as the first pilot exploratory well to use the system in China. The drilled strata of the well feature fracture-cavity development, high leakage risk, strong abrasiveness, and poor drillability, which lead to many drilling difficulties, such as being very leak-prone, highly likely to collapse and break, subject to serious bit bouncing, and low rate of penetration(ROP). In response to these drilling problems, key technologies for comprehensive and efficient drilling were developed. They are based on the formulation of ROP increase and rock breakage plans for different well sections, the optimal selection of drilling BHA(Bottom Hole Assembly) for rock breakage at different well sections, and the development of a plugging and anti-sloughing drilling fluids while strictly implementing the the daily rate system management mode which was customized for Sinopec’s drilling and completion projects. The field application revealed that breakthroughs were made in terms of operation efficiency, drilling and completion periods, complex processing, and average ROP, and there were no failures or shutdowns during drilling. With a drilling depth of 4 056 m, the drilling period, well completion period, and the average ROP of the whole well were 35.06 days, 39.79 days, and 16.04 m/h, respectively, all of which set records for exploratory well constructions in the Binchang Work Area. The research shows that the daily rate system management mode has advantages in the integrated application of new technologies and management efficiency. Moreover, the key drilling technologies and management mode of Well Bin 4 are reproducible and can be used as reference, which provide a demonstration for the market-oriented operation and promotion of the daily rate system.
[1] |
路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001
LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
|
[2] |
尹慧博,索忠伟,李博东,等. 沙特HWY区块HWY-116井提速技术[J]. 石油钻探技术,2020,48(5):34–38. doi: 10.11911/syztjs.2020048
YIN Huibo, SUO Zhongwei, LI Bodong, et al. Drilling rate improvement technology adopted in Well HWY-116 of the HWY Block, Saudi Arabia[J]. Petroleum Drilling Techniques, 2020, 48(5): 34–38. doi: 10.11911/syztjs.2020048
|
[3] |
刘书斌,倪红坚,张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术,2020,48(5):69–76. doi: 10.11911/syztjs.2020072
LIU Shubin, NI Hongjian, ZHANG Heng. Development and applications of a compound axial and torsional impact drilling tool[J]. Petroleum Drilling Techniques, 2020, 48(5): 69–76. doi: 10.11911/syztjs.2020072
|
[4] |
杨进. 深水油气井表层导管下入深度计算方法[J]. 石油学报,2019,40(11):1396–1406. doi: 10.7623/syxb201911010
YANG Jin. Calculation method of surface conductor setting depth in deepwater oil and gas wells[J]. Acta Petrolei Sinica, 2019, 40(11): 1396–1406. doi: 10.7623/syxb201911010
|
[5] |
胡志强,杨进,路保平,等. 深水泡沫套管静水压载特性与压力控制机理[J]. 石油学报,2019,40(6):726–733. doi: 10.7623/syxb201906008
HU Zhiqiang, YANG Jin, LU Baoping, et al. Hydrostatic pressure characteristics and pressure control mechanism of foam casing in deepwater wells[J]. Acta Petrolei Sinica, 2019, 40(6): 726–733. doi: 10.7623/syxb201906008
|
[6] |
唐文泉,高书阳,王成彪,等. 龙马溪页岩井壁失稳机理及高性能水基钻井液技术[J]. 钻井液与完井液,2017,34(3):21–26. doi: 10.3969/j.issn.1001-5620.2017.03.004
TANG Wenquan, GAO Shuyang, WANG Chengbiao, et al. Research on mechanisms of wellbore instability of Longmaxi shale formation and high performance water base drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2017, 34(3): 21–26. doi: 10.3969/j.issn.1001-5620.2017.03.004
|
[7] |
唐文泉,王成彪,林永学,等. 页岩气地层纳微米孔隙结构特征及封堵实验评价[J]. 科学技术与工程,2017,17(12):32–38. doi: 10.3969/j.issn.1671-1815.2017.12.007
TANG Wenquan, WANG Chengbiao, LIN Yongxue, et al. The characteristic analysis of micro-nano pore structure in shale gas formation and its sealing evaluation[J]. Science Technology and Engineering, 2017, 17(12): 32–38. doi: 10.3969/j.issn.1671-1815.2017.12.007
|
[8] |
牛成成,肖超,韩艳浓,等. 阿根廷圣豪尔赫湾油田复杂地层防塌钻井液技术[J]. 石油钻探技术,2016,44(1):23–28.
NIU Chengcheng, XIAO Chao, HAN Yannong, et al. Drilling fluid technology for enhancing borehole stability for complex reservoirs in the San Jorge Oilfield, Argentina[J]. Petroleum Drilling Techniques, 2016, 44(1): 23–28.
|
[9] |
胡志强,路保平,侯绪田,等. 深层气井油套环空泄漏点关键参数地面诊断技术[J]. 石油钻采工艺,2020,42(5):632–636.
HU Zhiqiang, LU Baoping, HOU Xutian, et al. Surface diagnosis technology for the key parameters of leakage point in the tubing-casing annulus of deep gas wells[J]. Oil Drilling & Production Technology, 2020, 42(5): 632–636.
|
[10] |
谢晗,况雨春,秦超. 非平面PDC切削齿破岩有限元仿真及试验[J]. 石油钻探技术,2019,47(5):69–73. doi: 10.11911/syztjs.2019043
XIE Han, KUANG Yuchun, QIN Chao. The finite element simulation and test of rock breaking by non-planar PDC cutting cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69–73. doi: 10.11911/syztjs.2019043
|
[11] |
胡志强,杨进,刘书杰,等. 基于套管–水泥环–地层热固耦合作用的多层套管环空附加压力预测模型[J]. 工程热物理学报,2018,39(8):1824–1832.
HU Zhiqiang, YANG Jin, LIU Shujie, et al. Prediction model of multilayer casing annular pressure buildup based on casing-cement sheath-formation with thermo-structural coupling effects[J]. Journal of Engineering Thermophysics, 2018, 39(8): 1824–1832.
|
[12] |
罗恒荣,崔晓杰,谭勇,等. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验[J]. 石油钻探技术,2020,48(3):58–62. doi: 10.11911/syztjs.2020037
LUO Hengrong, CUI Xiaojie, TAN Yong, et al. Research and field test on drilling acceleration technology with hydraulic torsional impactor combined with hydraulic boosters[J]. Petroleum Drilling Techniques, 2020, 48(3): 58–62. doi: 10.11911/syztjs.2020037
|
1. |
车继勇,丁鹏,王红月,马永刚. 组合钻具定向钻井造斜及提速技术方法. 设备管理与维修. 2024(08): 98-100 .
![]() | |
2. |
熊浪豪,巢世伟,柏尚宇,陈君,范乘浪,崔建峰. E Zhanbyrshy-3井钻井实践及技术难点分析. 内蒙古石油化工. 2023(05): 63-66+120 .
![]() | |
3. |
汪伟,柳贡慧,李军,查春青,连威,夏铭莉. 脉动式扭转冲击钻井工具工作特性分析与测试. 石油钻探技术. 2022(05): 63-69 .
![]() | |
4. |
宋周成,翟文宝,邓昌松,徐杨,徐席明,汪鑫,文涛. 富满油田超深井井身结构优化技术与应用. 钻采工艺. 2022(06): 36-41 .
![]() | |
5. |
王涛,刘锋报,罗威,晏智航,陆海瑛,郭斌. 塔里木油田防漏堵漏技术进展与发展建议. 石油钻探技术. 2021(01): 28-33 .
![]() | |
6. |
崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术. 石油钻探技术. 2021(02): 9-13 .
![]() | |
7. |
苏崭,王博,盖京明,李玮,赵欢,陈冰邓. 复合式扭力冲击器在坚硬地层中的应用. 中国煤炭地质. 2021(05): 47-50+57 .
![]() | |
8. |
张强,饶志华,秦世利,金勇. 南海东部深层古近系高效开发技术探索与实践. 石油化工应用. 2021(06): 34-38 .
![]() | |
9. |
李银婷,董小虎. 顺北油田钻井参数强化的提速效果评价. 钻探工程. 2021(07): 72-78 .
![]() | |
10. |
陈冬毅,徐鲲,张作伟,吕广,张鑫,郭小明. 恒压恒扭工具在渤海油田中的应用. 科学技术创新. 2021(22): 153-154 .
![]() | |
11. |
严德,张玉山,宋玲安,陈彬,李彬,刘保波. 深水高温高压井钻井技术探索与实践. 中国石油和化工标准与质量. 2021(13): 193-194 .
![]() | |
12. |
张喆,闫楚旋,冯震,脱直霖,石朝龙. 塔里木油田HLHT区块优快钻井技术研究. 云南化工. 2021(10): 127-129 .
![]() | |
13. |
李双贵,于洋,樊艳芳,曾德智. 顺北油气田超深井井身结构优化设计. 石油钻探技术. 2020(02): 6-11 .
![]() | |
14. |
袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 .
![]() | |
15. |
张智亮,王威,伊明,刘强. 井下安全监控系统设计与实现. 石油钻探技术. 2020(06): 65-70 .
![]() | |
16. |
周波,汪海阁,张富成,纪国栋,韩泽龙,武强. 温度压力对岩石可钻性和破岩效率影响实验. 石油钻采工艺. 2020(05): 547-552 .
![]() | |
17. |
李林涛,万小勇,黄传艳,潘丽娟,郭知龙,曹宗波,张伟博. 双向卡瓦可回收高温高压封隔器的研制与应用. 石油机械. 2019(03): 81-86 .
![]() | |
18. |
路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 .
![]() | |
19. |
江波,任茂,王希勇. 彭州气田PZ115井钻井提速配套技术. 探矿工程(岩土钻掘工程). 2019(08): 73-78 .
![]() | |
20. |
郑振国,黎红胜,赵海艳,温慧芸,孙东方. 哥伦比亚Matambo区块深井钻井关键技术. 石油钻探技术. 2018(02): 30-37 .
![]() | |
21. |
丁红,宋朝晖,袁鑫伟,邢战,张宏阜,张仪. 哈拉哈塘超深定向井钻井技术. 石油钻探技术. 2018(04): 30-35 .
![]() | |
22. |
李世昌,闫立鹏,李建冰,白文路,杨秀丽,闫天宇. 自循环粒子射流钻井提速工具机理研究. 中国锰业. 2018(03): 98-102 .
![]() | |
23. |
陈养龙,席宝滨,晁文学,朱伟厚. 顺北区块Ⅰ号断裂带钻井分层提速技术. 断块油气田. 2018(05): 649-652 .
![]() |