WANG Tao, LIU Fengbao, LUO Wei, YAN Zhihang, LU Haiying, GUO Bin. The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28-33. DOI: 10.11911/syztjs.2020080
Citation: WANG Tao, LIU Fengbao, LUO Wei, YAN Zhihang, LU Haiying, GUO Bin. The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28-33. DOI: 10.11911/syztjs.2020080

The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield

More Information
  • Received Date: December 04, 2019
  • Revised Date: June 15, 2020
  • Available Online: August 24, 2020
  • With the goal of solving the problem of circulation lost under complicated geological conditions of the Tarim Oilfield, this paper analyzed the types of circulation lost in this oilfield combining its formation characteristics, and summarized the development history and achievements of leakage prevention and plugging technologies in this field. It shows that leakages induced by porosity, fracture and caverns are all encountered in Tarim Oilfield, but mainly caused by fractures and cavity. The development of leakage prevention and plugging technologies in this oilfield has undergone two stages: the establishment of basic system and the development and perfection of characteristic technology. A series of techniques have been formed such as oil-based drilling fluid leakage prevention and plugging, high-strength pressure-bearing plugging, high-pressure brine layer leakage prevention and plugging, and fracture-cavity leakage plugging. From the analysis and sorting, we have clarified the current status of leakage prevention and plugging techniques in Tarim Oilfield and the remaining challenges in leakage control, and determined the trend of research. We proposed suggestions for further development of those technologies, such as strengthening formation prediction, developing or introducing new plugging technologies, enriching engineering techniques, and developing big data plugging software.
  • [1]
    邓昌松,张宗谭,冯少波,等. 高含硫、大漏、超深水平井钻完井技术:以塔里木油田中古10HC井为例[J]. 石油钻采工艺,2018,40(1):27–32.

    DENG Changsong, ZHANG Zongtan, FENG Shaobo, et al. Drilling and completion technologies suitable for ultradeep horizontal wells of high sulfur content and serious circulation loss: a case study on Well 10HC of Middle Paleozoic in Tarim Oilfield[J]. Oil Drilling & Production Technology, 2018, 40(1): 27–32.
    [2]
    刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28.

    LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28.
    [3]
    黄智斌, 吴绍祖, 赵治信,等. 塔里木盆地及周边综合地层区划[J]. 新疆石油地质,2002,23(1):13–17.

    HUANG Zhibin,WU Shaozu, ZHAO Zhixin,et al. The composite regional stratigraphic classification in Tarim Basin and its circumferences[J]. Xinjiang Petroleum Geology, 2002, 23(1): 13–17.
    [4]
    李宁,周小君,周波,等. 塔里木油田HLHT区块超深井钻井提速配套技术[J]. 石油钻探技术,2017,45(2):10–14.

    LI Ning,ZHOU Xiaojun,ZHOU Bo,et al. Technologies for fast drilling ultra-deep wells in the HLHT Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10–14.
    [5]
    李兵,邓尚,李王鹏,等. 塔里木盆地塔河地区走滑断裂体系活动特征与油气地质意义[J]. 特种油气藏,2019,26(4):45–51.

    LI Bing, DENG Shang, LI Wangpeng, et al. Strike-slip fault system activity and hydrocarbon geology understanding in Tahe of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 45–51.
    [6]
    王新新,朱永峰,杨鹏飞,等. 塔里木盆地哈拉哈塘油田A-B区块二叠系火成岩漏失原因与应对措施[J]. 地质科技情报,2019,38(2):130–136.

    WANG Xinxin, ZHU Yongfeng, YANG Pengfei, et al. Lost circulation reason and solutions of Permian igneous rock in Halahatang Oilfield A-B Area, Tarim Basin[J]. Geological Science and Technology Information, 2019, 38(2): 130–136.
    [7]
    杨金龙,罗静兰,何发歧,等. 塔河地区二叠系火山岩储集层特征[J]. 石油勘探与开发,2004,31(4):44–47. doi: 10.3321/j.issn:1000-0747.2004.04.012

    YANG Jinlong, LUO Jinglan, HE Faqi, et al. Permian volcanic reservoirs in the Tahe region[J]. Petroleum Exploration and Development, 2004, 31(4): 44–47. doi: 10.3321/j.issn:1000-0747.2004.04.012
    [8]
    陈柳,刘翔,洪英林,等. 塔中碳酸盐岩储层恶性井漏治理现状及对策浅析[J]. 西部探矿工程,2018,30(6):69–72. doi: 10.3969/j.issn.1004-5716.2018.06.026

    CHEN Liu, LIU Xiang, HONG Yinglin, et al. Treatment of malignant well leakage in Tarim carbonate reservoir and countermeasures[J]. West-China Exploration Engineering, 2018, 30(6): 69–72. doi: 10.3969/j.issn.1004-5716.2018.06.026
    [9]
    王建华,闫丽丽,谢盛,等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术,2020,48(2):29–33.

    WANG Jianhua, YAN Lili, XIE Sheng, et al. Oil-based drilling fluid technology for high pressure brine layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29–33.
    [10]
    张路锋,周福建,张士诚,等. 塔里木克深致密砂岩气藏基质钻井液伤害评价[J]. 钻井液与完井液,2019,36(1):126–132.

    ZHANG Lufeng, ZHOU Fujian, ZHANG Shicheng,et al. Evaluation of drilling fluid damage to matrices of tight sandstone of Keshen gas reservoir in Tarim Basin[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 126–132.
    [11]
    任保友,刘锋报,徐兴梁,等. 塔里木山前构造克深某区块盐膏层井漏技术处理[J]. 西部探矿工程,2018,30(2):75–78. doi: 10.3969/j.issn.1004-5716.2018.02.027

    REN Baoyou, LIU Fengbao, XU Xingliang, et al. Treatment of well leakage of salt-paste layer in a block of Keshen in Tarim Piedmont[J]. West-China Exploration Engineering, 2018, 30(2): 75–78. doi: 10.3969/j.issn.1004-5716.2018.02.027
    [12]
    何选蓬,程天辉,周健,等. 秋里塔格构造带风险探井中秋1井安全钻井关键技术[J]. 石油钻采工艺,2019,41(1):1–7.

    HE Xuanpeng, CHENG Tianhui, ZHOU Jian, et al. Key technologies of safe drilling in Zhongqiu 1 Well, a risk exploration well in Qiulitag Tectonic Belt[J]. Oil Drilling & Production Technology, 2019, 41(1): 1–7.
  • Related Articles

    [1]CHEN Zuo, LI Shuangming, CHEN Zan, WANG Haitao. Hydraulic Fracture Initiation and Extending Tests in Deep Shale Gas Formations and Fracturing Design Optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70-76. DOI: 10.11911/syztjs.2020060
    [2]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [3]Tian Shouceng, Chen Liqiang, Sheng Mao, Li Gensheng, Liu Qingling. Modeling of Fracture Initiation for Staged Hydraulic Jetting Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(5): 31-36. DOI: 10.11911/syztjs.201505006
    [4]Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
    [5]Liu Lihong, Wang Juanjuan, Gao Chunhua. Research and Application of a Multicomponent Modified Instant Guar Fracturing Fluid[J]. Petroleum Drilling Techniques, 2015, 43(3): 116-119. DOI: 10.11911/syztjs.201503021
    [6]Peng Chunyao. Mechanism of Interaction between Hydraulic Fractures and Weak Plane in Layered Shale[J]. Petroleum Drilling Techniques, 2014, 42(4): 32-36. DOI: 10.3969/j.issn.1001-0890.2014.04.006
    [7]Shao Shangqi, Tian Shouceng, Li Gensheng, He Zhenguo. Fracture Spacing Optimization for Fracture-Network Fracturing in Horizontal Wells[J]. Petroleum Drilling Techniques, 2014, 42(1): 86-90. DOI: 10.3969/j.issn.1001-0890.2014.01.017
    [8]Jin Zhirong, Zhang Huali, Zhou Jidong, Wang Jintao. Research and Application of Massive Combined Sand Fracturing for Thin Interbedded Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(6): 86-89. DOI: 10.3969/j.issn.1001-0890.2013.06.017
    [9]An Fengjun, Zhao Anjun, Zhou Huizhi, Duan Guifu. Effect Analysis of Secondary Sand Fracturing Using Four-Dimensional Seismic Imaging of Micro-Fractures[J]. Petroleum Drilling Techniques, 2013, 41(5): 98-101. DOI: 10.3969/j.issn.1001-0890.2013.05.019
    [10]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
  • Cited by

    Periodical cited type(16)

    1. 邓华根,韩成,王应好. 海上页岩油探井测试大规模压裂技术及实践. 化学工程与装备. 2025(02): 38-42 .
    2. 刘臣,卢海兵,陈钊,葛婧楠,孙挺. 大段多簇压裂改造技术优化与页岩气储层分析应用. 粘接. 2024(04): 121-124 .
    3. 王遵察,程万,艾昆,胡清海,石育钊. 井工厂井网部署与压裂模式发展现状与展望. 钻探工程. 2024(03): 9-19 .
    4. 戴佳成,李根生,孙耀耀,李敬彬,王天宇. 基于水平井的径向井开采页岩油产能模拟和参数分析. 石油科学通报. 2024(04): 604-616 .
    5. 杨南鹏,范雨航,高彬,张世锋. 暂堵技术在致密砂岩气藏压裂中的应用. 能源与环保. 2023(01): 168-174 .
    6. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
    7. 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势. 石油钻探技术. 2023(05): 66-77 . 本站查看
    8. 戴佳成,王天宇,田康健,李敬彬,田守嶒,李根生. 页岩油储层径向井立体压裂产能预测模型研究. 石油科学通报. 2023(05): 588-599 .
    9. 滕卫卫,古小龙,王博,张谷畅,吴宝成,李建民,葛洪魁. 段内多簇暂堵压裂中暂堵球直径优化研究. 钻采工艺. 2023(05): 61-67 .
    10. 董小卫,田志华,李一强,汪志,韩光耀,唐家财,刘帅. 水平井桥塞分段压裂管外光纤监测技术. 石油钻采工艺. 2023(05): 649-654 .
    11. 陈志明,赵鹏飞,曹耐,廖新维,王佳楠,刘辉. 页岩油藏压裂水平井压–闷–采参数优化研究. 石油钻探技术. 2022(02): 30-37 . 本站查看
    12. 蔡萌,唐鹏飞,魏旭,刘宇,张浩,张宝岩,耿丹丹. 松辽盆地古龙页岩油复合体积压裂技术优化. 大庆石油地质与开发. 2022(03): 156-164 .
    13. 樊平天,刘月田,冯辉,周东魁,李平,周丰,秦静,余维初,史黎岩. 致密油新一代驱油型滑溜水压裂液体系的研制与应用. 断块油气田. 2022(05): 614-619 .
    14. 王成俊,张磊,展转盈,倪军,高怡文,王维波. 基于裂缝介质转变为多孔颗粒介质的调剖方法与矿场应用. 断块油气田. 2022(05): 709-713 .
    15. 李臻,李真,程嘉瑞,崔璐. 高速射流孔眼冲刷腐蚀扩孔规律试验研究. 石油化工腐蚀与防护. 2022(05): 1-5+41 .
    16. 李臻,李真,程嘉瑞,崔璐. 高速射流孔眼冲刷腐蚀扩孔规律实验研究. 山东化工. 2022(20): 1-4+8 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (872) PDF downloads (193) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return