YU Yi, WANG Xuerui, KE Ke, WANG Di, YU Xin, GAO Yonghai. Prediction Model and Distribution Law Study of Temperature and Pressure of the Wellbore in drilling in Arctic Region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11-20. DOI: 10.11911/syztjs.2021047
Citation: YU Yi, WANG Xuerui, KE Ke, WANG Di, YU Xin, GAO Yonghai. Prediction Model and Distribution Law Study of Temperature and Pressure of the Wellbore in drilling in Arctic Region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11-20. DOI: 10.11911/syztjs.2021047

Prediction Model and Distribution Law Study of Temperature and Pressure of the Wellbore in drilling in Arctic Region

More Information
  • Received Date: January 01, 2021
  • Revised Date: March 30, 2021
  • Available Online: April 27, 2021
  • The low temperature condition of permafrost in Arctic region affects the rheology of drilling fluids and the distribution of temperature and pressure in the wellbore during drilling. In order to understand the influence law of permafrost in Arctic region on the temperature and pressure distribution in wellbore and provide a basis for the design and construction for drilling in Arctic region, a model to predict the wellbore temperature and pressure of drilling in Arctic region was built. It was based on the analysis of the influence of low temperatures on the rheology of water-based and oil-based drilling fluids, considering the coupling between permafrost and wellbore. By comparing the measured and test results, it was verified that the prediction accuracy of the proposed model met the requirements of drilling in Arctic region. The model was used to simulate the temperature and pressure distribution in a wellbore in Arctic region under the conditions of no circulation or pump function. The results showed that the drilling fluids absorbed the heat of the high-temperature formation and returned to the annulus transferring the heat to the permafrost in shallow part of the wellbore during the circulation. This process thawed the permafrost near the wellbore and the wellbore temperature was lowered due to the heat consumed by thawing. The circulating friction in annulus increases with the increase of circulation time. The longer the pump shutdown lasts, the closer the temperature of drilling fluid to the formation temperature in the wellbore. The larger the annular circulation pressure loss, and the higher the pump pressure. The research results can provide a basis and guidance for design and construction of drilling in Arctic region.
  • [1]
    王淑玲,姜重昕,金玺. 北极的战略意义及油气资源开发[J]. 中国矿业,2018,27(1):20–26, 39.

    WANG Shuling, JIANG Chongxin, JIN Xi. The strategic significance of the Arctic and the development of oil and gas resources[J]. China Mining Magazine, 2018, 27(1): 20–26, 39.
    [2]
    孙宝江. 北极深水钻井关键装备及发展展望[J]. 石油钻探技术,2013,41(3):7–12. doi: 10.3969/j.issn.1001-0890.2013.03.002

    SUN Baojiang. Progress and prospect of key equipments for Arctic deepwater drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 7–12. doi: 10.3969/j.issn.1001-0890.2013.03.002
    [3]
    HARRISON G R. Exploratory drilling: the polar challenge[R]. WPC 18128, 1979.
    [4]
    DAVISON J M, CLARY S, SAASEN A, et al. Rheology of various drilling fluid systems under deepwater drilling conditions and the importance of accurate predictions of downhole fluid hydraulics[R]. SPE 56632, 1999.
    [5]
    吴彬,向兴金,张岩,等. 深水低温条件下水基钻井液的流变性研究[J]. 钻井液与完井液,2006,23(3):12–13, 19. doi: 10.3969/j.issn.1001-5620.2006.03.004

    WU Bin, XIANG Xingjin, ZHANG Yan, et al. Rheology study of the water based drilling fluids at deep water and low temperature[J]. Drilling Fluid & Completion Fluid, 2006, 23(3): 12–13, 19. doi: 10.3969/j.issn.1001-5620.2006.03.004
    [6]
    纪健,袁华玉,李建,等. 深水钻井环境下低温高压对油基钻井液流变性的影响[J]. 内蒙古石油化工,2009,35(21):134–136.

    JI Jian, YUAN Huayu, LI Jian, et al. Influence of low temperature and high pressure on rheological properties of oil-based drilling fluids in deep offshore conditions[J]. Inner Mongolia Petrochemical Industry, 2009, 35(21): 134–136.
    [7]
    田荣剑,王楠,李松,等. 深水作业中钻井液在低温高压条件下的流变性[J]. 钻井液与完井液,2010,27(5):5–7,87. doi: 10.3969/j.issn.1001-5620.2010.05.002

    TIAN Rongjian, WANG Nan, LI Song, et al. Research on drilling fluid rheology with low temperature and high pressure in deep water operation[J]. Drilling Fluid & Completion Fluid, 2010, 27(5): 5–7,87. doi: 10.3969/j.issn.1001-5620.2010.05.002
    [8]
    胡三清,雷昕,余姣梅,等. 深水低温合成基钻井液的室内研究[J]. 石油天然气学报,2010,32(3):120–123. doi: 10.3969/j.issn.1000-9752.2010.03.027

    HU Sanqing, LEI Xin, YU Jiaomei, et al. Laboratory study on deep low-temperature synthetic-based drilling fluids[J]. Journal of Oil and Gas Technology, 2010, 32(3): 120–123. doi: 10.3969/j.issn.1000-9752.2010.03.027
    [9]
    易灿,闫振来,赵怀珍. 超深井水基钻井液高温高压流变性试验研究[J]. 石油钻探技术,2009,37(1):10–13. doi: 10.3969/j.issn.1001-0890.2009.01.003

    YI Can, YAN Zhenlai, ZHAO Huaizhen. Rheological properties of water-based drilling fluids in ultra-deep wells at high temperature and high pressure[J]. Petroleum Drilling Techniques, 2009, 37(1): 10–13. doi: 10.3969/j.issn.1001-0890.2009.01.003
    [10]
    RAMEY H J Jr. Wellbore heat transmission[J]. Journal of Petroleum Technology, 1962, 14(4): 427–435. doi: 10.2118/96-PA
    [11]
    WILLHITE G P. Over-all heat transfer coefficients in stream and hot water injection wells[J]. Journal of Petroleum Technology, 1967, 19(5): 607–615. doi: 10.2118/1449-PA
    [12]
    WU Yushu, PRUESS K. An analytical solution for wellbore heat transmission in layered formations[J]. SPE Reservoir Engineeing, 1990, 5(4): 531–538. doi: 10.2118/17497-PA
    [13]
    HASAN A R, KABIR C S, AMEEN M, et al. A fluid circulating temperature model for workover oprations[J]. SPE Journal, 1996, 1(2): 133–144. doi: 10.2118/27848-PA
    [14]
    高永海,孙宝江,王志远,等. 深水钻探井筒温度场的计算与分析[J]. 中国石油大学学报(自然科学版),2008,32(2):58–62.

    GAO Yonghai, SUN Baojiang, WANG Zhiyuan, et al. Calculation and analysis of wellbore temperature field in deepwater drilling[J]. Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(2): 58–62.
    [15]
    李梦博,柳贡慧,李军,等. 考虑非牛顿流体螺旋流动的钻井井筒温度场研究[J]. 石油钻探技术,2014,42(5):74–79.

    LI Mengbo, LIU Gonghui, LI Jun, et al. Research on wellbore temperature field with helical flow of non-Newtonian fluids in drilling operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74–79.
    [16]
    PETERS E J, CHENEVERT M E, ZHANG C. A model for predicting the density of oil-based muds at high pressures and temperatures[R]. SPE 18036, 1990.
    [17]
    OSISANYA S O, HARRIS O O. Evaluation of equivalent circulating density of drilling fluids under high-pressure/high-temperature conditions[R]. SPE 97018, 2005.
    [18]
    卢秋平,邵忠,陆红锋,等. 深水天然气水合物连续管水平井钻井井筒多相流动规律研究[J]. 中国石油和化工标准与质量,2019,39(5):70–71.

    LU Qiuping, SHAO Zhong, LU Hongfeng, et al. Study on multiphase flow in wellbore of deepwater gas hydrate coiled tubing horizontal well[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(5): 70–71.
    [19]
    WANG Xuerui, WANG Zhiyuan, DENG Xuejing, et al. Coupled thermal model of wellbore and permafrost in Arctic regions[J]. Applied Thermal Engineering, 2017, 123: 1291–1299. doi: 10.1016/j.applthermaleng.2017.05.186
    [20]
    樊洪海. 实用钻井流体力学[J]. 北京: 石油工业出版社,2014.

    FAN Honghai. Practical drilling fluid mechanics[J]. Beijing: Petroleum Industry Press, 2014.
    [21]
    CHEN Zhongming, XIE Liangjun. Special considerations for deepwater well temperature prediction[R]. SPE 176089, 2015.
    [22]
    XU Guofang, QI Jilin, JIN Huijun. Model test study on influence of freezing and thawing on the crude oil pipeline in cold regions[J]. Cold Regions Science and Technology, 2010, 64(3): 262–270. doi: 10.1016/j.coldregions.2010.04.010
  • Related Articles

    [1]JIANG Tingxue, XIAO Bo, SHEN Ziqi, LIU Xuepeng, ZHONG Guanyu. Vertical Penetration of Network Fracturing Technology for Horizontal Wells in Continental Shale Oil and Gas[J]. Petroleum Drilling Techniques, 2023, 51(5): 8-14. DOI: 10.11911/syztjs.2023078
    [2]XIONG Xiaofei, SHENG Jiaping. Experimental Study on Foam-Assisted Gas Huff-and-Puff in the Jimsar Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2022, 50(2): 22-29. DOI: 10.11911/syztjs.2022017
    [3]ZHANG Kuangsheng, TANG Meirong, TAO Liang, DU Xianfei. Horizontal Well Volumetric Fracturing Technology Integrating Fracturing, Energy Enhancement, and Imbibition for Shale Oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9-15. DOI: 10.11911/syztjs.2022003
    [4]LI Kaikai, AN Ran, YUE Pandong, CHEN Shidong, YANG Kailan, WEI Wen. Large-Scale Energy Storage Volumetric Fracturing Technology for Horizontal Wells in the An 83 Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 125-129. DOI: 10.11911/syztjs.2021026
    [5]HAO Lihua, GAN Renzhong, PAN Liyan, RUAN Dong, LIU Chenggang. Key Technology of Volumetric Fracturing in Vertical Wells of Hugely Thick Shale Oil Reservoirs in the Fengcheng Formation of the Mahu Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 99-105. DOI: 10.11911/syztjs.2021092
    [6]ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, TAO Liang. Practice and Development Suggestions for Volumetric Fracturing Technology for Shale Oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85-91. DOI: 10.11911/syztjs.2021075
    [7]ZHOU Shuangjun, ZHU Lixin, YANG Sen, MAO Jun, LI Xiaojie, HUANG Weian. Technology for Preventing and Controlling Circulation Loss in the Jimusar Shale Oil Block[J]. Petroleum Drilling Techniques, 2021, 49(4): 66-70. DOI: 10.11911/syztjs.2021034
    [8]XU Feng, YAO Yuedong, WU Chengmei, XU Zhang, ZHANG Jinfeng, ZHAO Guoxiang. Effect of Temperature on the Imbibition Efficiency of the Jimusar Tight Oil Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(5): 100-104. DOI: 10.11911/syztjs.2020114
    [9]ZENG Bo, WANG Xinghao, HUANG Haoyong, ZHANG Nanqiao, YUE Wenhan, DENG Qi. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073
    [10]Liao Tengyan, Yu Libin, Li Junsheng. A Factory-Like Drilling Technology of Horizontal Wells for Tight Sandstone Reservoirs in the Jimusaer Area[J]. Petroleum Drilling Techniques, 2014, 42(6): 30-33. DOI: 10.11911/syztjs.201406006
  • Cited by

    Periodical cited type(4)

    1. 曾皓,金衍,王海波. 宁东油田致密油储层损害机理与对策. 石油钻探技术. 2024(01): 62-68 . 本站查看
    2. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
    3. 厉明伟,周建民,秦涛,王志,王伟,邱春阳. 聚胺复合盐润滑防塌钻井液在孤东斜288井的应用. 兰州石化职业技术大学学报. 2024(03): 13-16 .
    4. 唐凯,潘宇强,沈明华. 防水窜水泥浆体系的研究与应用. 钻采工艺. 2023(02): 27-34 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (690) PDF downloads (125) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return