ZENG Hao, JIN Yan, WANG Haibo. Damage mechanism and countermeasures for tight oil reservoirs in Ningdong Oilfield [J]. Petroleum Drilling Techniques,2024, 52(1):62-68. DOI: 10.11911/syztjs.2023109
Citation: ZENG Hao, JIN Yan, WANG Haibo. Damage mechanism and countermeasures for tight oil reservoirs in Ningdong Oilfield [J]. Petroleum Drilling Techniques,2024, 52(1):62-68. DOI: 10.11911/syztjs.2023109

Damage Mechanism and Countermeasures for Tight Oil Reservoirs in Ningdong Oilfield

More Information
  • Received Date: July 09, 2023
  • Revised Date: November 13, 2023
  • Available Online: November 17, 2023
  • Tight oil reservoirs in Ningdong Oilfield in Ordos Basin are characterized by complex lithology, low porosity and permeability, and strong heterogeneity. Drilling fluid losses occur frequently during the drilling process, and the invasion of the solid and liquid phase can easily cause damage to the formation. In order to determine the microscopic characteristics and damage mechanism of the tight oil reservoir in Ningdong Oilfield and reduce the damage to the reservoir during drilling and completion, systematic experimental studies such as scanning electron microscope (SEM) and solid-liquid damage tests were carried out. It was determined that the main causes of damage to the studied tight oil formation were solid phase invasion, water blockage, and associated water and salt sensitivity. The damage mechanism of the tight oil reservoir in this oilfield was clarified. In addition, it was found that the potassium ammonium-based polymer drilling fluid caused great damage to the tight oil formation, and the permeability recovery was low when the reservoir was treated with invisible acid. In view of the damage mechanism of tight oil reservoirs and the shortcomings of drilling fluid used in the oilfield, a low-damage and solid-free drilling fluid was constructed with a viscosity of 45.5 mPa·s, an API filtration loss of 3.5 mL, achieving a permeability recovery more than 85%, which caused low damage to the formation and could meet the requirements of protecting tight oil reservoirs in Ningdong Oilfield. The research results can provide a basis for formulating technical protection measures for tight oil reservoirs in Ordos Basin.

  • [1]
    邹才能,潘松圻,赵群. 论中国“能源独立”战略的内涵、挑战及意义[J]. 石油勘探与开发,2020,47(2):416–426.

    ZOU Caineng, PAN Songqi, ZHAO Qun. On the connotation, challenges and significance of China’s “energy independence” strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416–426.
    [2]
    孙金声,许成元,康毅力,等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术,2020,48(4):1–10.

    SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1–10.
    [3]
    徐同台, 熊友明, 康毅力. 保护油气层技术[M]. 3 版. 北京: 石油工业出版社, 2010.

    XU Tongtai, XIONG Youming, KANG Yili. Technology for protecting oil and gas layers[M]. 3rd ed. Beijing: Petroleum Industry Press, 2010.
    [4]
    WEI Shiming, JIN Yan, XIA Yang, et al. The flowback and production analysis in sub-saturated fractured shale reservoirs[J]. Journal of Petroleum Science & Engineering, 2020, 186: 106694.
    [5]
    CIVAN F. Reservoir formation damage: fundamentals, modeling, assessment, and mitigation[M]. 2nd ed. Amsterdam: Gulf Professional Publishing, 2007.
    [6]
    金永辉, 王治富, 孙庆名,等. 致密储层纳米增注技术研究与应用[J]. 特种油气藏,2023,30(1):169–174.

    JIN Yonghui, WANG Zhifu, SUN Qingming, et al. Research and application of the nano-injection enhancing technology in tight reservoir[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 169–174.
    [7]
    张强. 文 23 储气库储层段钻井液及储层保护技术[J]. 断块油气田,2023,30(3):517–522.

    ZHANG Qiang. Drilling fluid and reservoir protection technology of reservoir sections in Wen 23 Gas Sstorage[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 517–522.
    [8]
    ELKEWIDY T I. Integrated evaluation of formation damage/remediation potential of low permeability reservoirs[R]. SPE 163310, 2012.
    [9]
    BAHRAMI H, REZAEE R, CLENNELL B. Water blocking damage in hydraulically fractured tight sand gas reservoirs: an example from Perth Basin, Western Australia[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 100–106.
    [10]
    滕学清,康毅力,张震,等. 塔里木盆地深层中–高渗砂岩储层钻井完井损害评价[J]. 石油钻探技术,2018,46(1):37–43.

    TENG Xueqing, KANG Yili, ZHANG Zhen, et al. Evaluation of drilling and completion damage in deep medium-to-high permeability permeability sandstone reservoirs in Tarim Basin[J]. Petroleum Drilling Techniques, 2018, 46(1): 37–43.
    [11]
    ZHANG Hongxia, YAN Jienian, SHU Yong, et al. Rheological property of low-damage, ideal packing, film-forming amphoteric/ sulfonation polymer drilling fluids[J]. Journal of Central South University of Technology, 2008, 15(supplement 1): 429–433.
    [12]
    王文雄,肖晖,叶亮,等. 不同岩性致密砂岩水锁伤害深度实验研究[J]. 非常规油气,2022,9(4):71–77.

    WANG Wenxiong, XIAO Hui, YE Liang, et al. Experimental study on water blocking damage depth of tight sandstone with different lithology[J]. Unconventional Oil & Gas, 2022, 9(4): 71–77.
    [13]
    HANDS N, KOWBEL K, MAIKRANZ S, et al. Drill-in fluid reduces formation damage, increases production rates[J]. Oil & Gas Journal, 1998, 96(28): 65–69.
    [14]
    张蕊,付春苗,王桂芹. 宁东油田ND61井钻井工程设计[J]. 延安大学学报(自然科学版),2019,38(3):90–93, 98.

    ZHANG Rui, FU Chunmiao, WANG Guiqin. Drilling engineering design of ND61 well in Ningdong Oilfield[J]. Journal of Yan'an University(Natural Science Edition), 2019, 38(3): 90–93, 98.
    [15]
    常洪超,陈荣凤,胡金鹏,等. 宁东油田NP7小井眼水平井钻井液技术[J]. 钻井液与完井液,2013,30(3):50–53.

    CHANG Hongchao, CHEN Rongfeng, HU Jinpeng, et al. Drilling fluid technology for slim-hole horizontal well NP7 in Ningdong Oilfield[J]. Drilling Fluid & Completion Fluid, 2013, 30(3): 50–53.
    [16]
    LI Xiaoqi, FANG Jichao, JI Bingyu. Quantitative analysis of phase separation using the lattice Boltzmann method[J]. Frontiers in Earth Science, 2021, 9: 748450.
    [17]
    曹辉,李宝军,赵向阳. 厄瓜多尔 Tambococha 油田水平井钻井液技术[J]. 石油钻探技术,2022,50(1):54–59.

    CAO Hui, LI Baojun, ZHAO Xiangyang. Drilling fluid technology for horizontal wells in Ecuador Tambococha Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 54–59.
    [18]
    贾虎 ,代昌楼 ,李三喜 ,等. 一种耐高温密度可调的柔性胶粒新型完井液[J]. 天然气工业,2022,42(12):106–116.

    JIA Hu, DAI Changlou, LI Sanxi, et al. A novel high-temperature-resistant, variable-density, flexible colloidal particle completion fluid[J]. Natural Gas Industry, 2022, 42(12): 106–116.
    [19]
    许洁,许林,李习文,等. 新型储层钻井完井一体化工作液设计及性能评价[J]. 钻井液与完井液,2023,40(2):184–192.

    XU Jie, XU Lin, LI Xiwen, et al. Design and evaluation of an integrated drilling and completion fluid[J]. Drilling Fluid & Completion Fluid., 2023, 40(2): 184–192.
    [20]
    廖权文,胡建均,史怀忠,等. 文 23 储气库钻井工程关键技术[J]. 石油钻采工艺,2023,45(2):160–166.

    LIAO Quanwen, HU Jianjun, SHI Huaizhong, et al. Key technologies in drilling engineering of Wen 23 Underground Gas Storage[J]. Oil Drilling & Production Technology, 2023, 45(2): 160–166.
  • Related Articles

    [1]SUN Huan, ZHU Mingming, YANG Yongping, WANG Weiliang, WANG Kai, ZHAO Xiangyang. Comprehensive Leakage Control Technology for Shale Gas Wells in Western Margin Thrust Zone of Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 49-54. DOI: 10.11911/syztjs.2024117
    [2]SHI Peiming, NI Huafeng, HE Huifeng, SHI Chongdong, LI Luke, ZHANG Yanbing. Key Technologies for Safe Drilling in Horizontal Section of Deep Coal Rock Gas Horizontal Well in Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 17-23. DOI: 10.11911/syztjs.2024112
    [3]ZHAO Zhenfeng, WANG Wenxiong, XU Xiaochen, YE Liang, LI Ming. Hydraulic Fracturing Technology for Deep Marine Shale Gas in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 23-32. DOI: 10.11911/syztjs.2023081
    [4]ZHANG Kuangsheng, QI Yin, XUE Xiaojia, TAO Liang, CHEN Wenbin, WU An’an. CO2 Regional Enhanced Volumetric Fracturing Technology for Shale Oil Horizontal Wells in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 15-22. DOI: 10.11911/syztjs.2023091
    [5]ZHANG Jinping, NI Huafeng, SHI Peiming. Safe and Efficient Drilling in Presalt High-Sulfur Reservoirs in the Eastern Gas Fields of Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(3): 22-29. DOI: 10.11911/syztjs.2023073
    [6]JIA Jia, XIA Zhongyue, FENG Lei, LI Jian, WANG Yang. Key Technology of Optimized and Fast Slim Hole Drilling in Shenfu Block, Ordos Basin[J]. Petroleum Drilling Techniques, 2022, 50(2): 64-70. DOI: 10.11911/syztjs.2021110
    [7]ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, TAO Liang. Practice and Development Suggestions for Volumetric Fracturing Technology for Shale Oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85-91. DOI: 10.11911/syztjs.2021075
    [8]HE Zuqing, LIANG Chengchun, PENG Hanxiu, ZHU Ming, HE Tong. Research and Tests on Horizontal Well Smart Layering Exploiting Technology in Tight Oil Reservoirs in Southern Ordos Basin[J]. Petroleum Drilling Techniques, 2017, 45(3): 88-94. DOI: 10.11911/syztjs.201703016
    [9]WANG Guangtao, XU Chuangchao, CAO Zongxiong, GUO Xiaoyong. A Sand Control Downhole Fracturing Technique for Tight Reservoir Development in the Ordos Basin[J]. Petroleum Drilling Techniques, 2016, 44(5): 84-89. DOI: 10.11911/syztjs.201605014
    [10]Qin Jinli, Chen Zuo, Yang Tongyu, Dai Wenchao, Wu Chunfang. Technology of Staged Fracturing with Multi-Stage Sleeves for Horizontal Wells in the Ordos Basin[J]. Petroleum Drilling Techniques, 2015, 43(1): 7-12. DOI: 10.11911/syztjs.201501002

Catalog

    Article Metrics

    Article views (172) PDF downloads (90) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return