PENG Xing, ZHOU Yucang, ZHU Zhichao, WANG Junfeng. Antileaking and Lost Circulation Control Technology for Deep Coalbed Methane Well in the Yanchuannan Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 47-52. DOI: 10.11911/syztjs.2020133
Citation: PENG Xing, ZHOU Yucang, ZHU Zhichao, WANG Junfeng. Antileaking and Lost Circulation Control Technology for Deep Coalbed Methane Well in the Yanchuannan Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 47-52. DOI: 10.11911/syztjs.2020133

Antileaking and Lost Circulation Control Technology for Deep Coalbed Methane Well in the Yanchuannan Block

More Information
  • Received Date: May 27, 2020
  • Revised Date: July 20, 2020
  • Available Online: December 06, 2020
  • The Yanchuannan Block possesses rich deep coalbed methane resources but has serious lost circulation problems during the drilling process. In order to reduce the frequency of the occurrence of lost circulation, minimize the economic losses induced by lost circulation, and ensure the safe and efficient development of coalbed methane wells,we developed a anti-leaking and lost circulation control technology. Based on the analysis of the geological characteristics and the lost circulation mechanism, the new technology incorporated plugging-while-drilling fluids and pressure-bearing plugging process was proposed. In the Yanchuannan Block where the upper formations develop pores, pore-type lost circulation predominates, 5% composite plugging materials are added to the drilling fluid for lost circulation control. The lower formations develop natural fractures, and are dominated by fracture-type lost circulation, accordingly 7% composite plugging materials are added to the plugging-while-drilling fluids for leakage prevention and plugging. For the formations where fractures can easily propagate, plugging-while-drilling fluids with 10% composite plugging materials were applied for plugging. In order to solve the problems that some coalbed methane wells have no blowout preventer or that the blowout preventer can’t perform pressure-bearing plugging, a packer with simple rubber plug at the wellhead was developed, which formed the pressure-bearing anti-leaking and lost circulation control technology for coalbed methane wells. After applying the technology to the deep coalbed methane wells in the Yanchuannan Block, the lost circulation rate was reduced from 41.53% to 23.07%, and the treatment time of lost circulation was also greatly shortened. The results also indicated that the proposed technology can lower the lost circulation rate of deep coalbed methane wells in the Yanchuannan Block, shorten drilling cycles, reduce the drilling cost, and improve the development benefits of coalbed methane in this block.
  • [1]
    温声明,周科,鹿倩. 中国煤层气发展战略探讨:以中石油煤层气有限责任公司为例[J]. 天然气工业,2019,39(5):129–136.

    WEN Shengming, ZHOU Ke, LU Qian. A discussion on CBM development strategies in China based upon a case study of PetroChina Coalbed Methane Co., Ltd.[J]. Natural Gas Industry, 2019, 39(5): 129–136.
    [2]
    庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64–68.

    GENG Meng, CHEN Hao, CHEN Yanpeng, et al. Methods and results of the fourth round National CBM resources evaluation[J]. Coal Science and Technology, 2018, 46(6): 64–68.
    [3]
    周梓欣,李瑞明,张伟. 新疆深部煤层气资源勘探潜力[J]. 中国煤炭地质,2018,30(7):28–31. doi: 10.3969/j.issn.1674-1803.2018.07.06

    ZHOU Zixin, LI Ruiming, ZHANG Wei. Deep part CBM resource exploration potential in Xinjiang[J]. Coal Geology of China, 2018, 30(7): 28–31. doi: 10.3969/j.issn.1674-1803.2018.07.06
    [4]
    李清,赵兴龙,谢先平,等. 延川南区块煤层气井高产水成因分析及排采对策[J]. 石油钻探技术,2013,41(6):95–99. doi: 10.3969/j.issn.1001-0890.2013.06.019

    LI Qing, ZHAO Xinglong, XIE Xianping, et al. Causes of high water yield from CBM wells in Yanchuannan Block and draining measures[J]. Petroleum Drilling Techniques, 2013, 41(6): 95–99. doi: 10.3969/j.issn.1001-0890.2013.06.019
    [5]
    赵景辉, 高玉巧, 陈贞龙, 等. 陕西延川南区块深部地应力状态及其对煤层气开发效果的影响[J/OL]. 中国地质, http://kns.cnki.net/kcms/detail/11.1167.P.20191231.0939.006.html.

    ZHAO Jinghui, GAO Yuqiao, CHEN Zhenlong, et al. Stress state of deep seam and its influence on development performance of CBM wells in the sorth Yanchuan Block [J/OL]. Geology in China, http://kns.cnki.net/kcms/detail/11.1167.P.20191231.0939.006.html.
    [6]
    李辛子,王运海,姜昭琛,等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报,2016,41(1):24–31.

    LI Xinzi, WANG Yunhai, JIANG Zhaochen, et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society, 2016, 41(1): 24–31.
    [7]
    李伯尧,王洪亮,印中华,等. 织金煤层气浅层大位移水平井钻完井技术[J]. 石油钻采工艺,2019,41(4):430–434.

    LI Boyao, WANG Hongliang, YIN Zhonghua, et al. Drilling and completion technologies for extended-reach shallow CBM wells in Zhijin[J]. Oil Drilling & Production Technology, 2019, 41(4): 430–434.
    [8]
    赵永哲, 徐堪社, 杨哲, 等. 贵州煤层气井中上部地层钻井防漏堵漏技术[J]. 煤田地质与勘探, 2019, 47(增刊1): 113-116.

    ZHAO Yongzhe, XU Kanshe, YANG Zhe, et al. Preventing and plugging lost circulation technique for drilling CBM wells in Guizhou[J]. Coal Geology & Exploration, 2019, 47(supplement 1): 113-116.
    [9]
    皇凡生,康毅力,李相臣,等. 单相水流诱发裂缝内煤粉启动机理与防控对策[J]. 石油学报,2017,38(8):947–954. doi: 10.7623/syxb201708009

    HUANG Fansheng, KANG Yili, LI Xiangchen, et al. Incipient motion mechanisms and control measures of coal fines during single-phase water flow in coalbed fractures[J]. Acta Petrolei Sinica, 2017, 38(8): 947–954. doi: 10.7623/syxb201708009
    [10]
    KANG Yili, XU Chengyuan, YOU Lijun, et al. Comprehensive prediction of dynamic fracture width for formation damage control in fractured tight gas reservoir[J]. International Journal of Oil, Gas and Coal Technology, 2015, 9(3): 296–310. doi: 10.1504/IJOGCT.2015.069014
    [11]
    KANG Yili, XU Chengyuan, YOU Lijun, et al. Temporary sealing technology to control formation damage induced by drill-in fluid loss in fractured tight gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2014, 20(supplement 3/4): 67–73.
    [12]
    XU Chengyuan, KANG Yili, YOU Lijun, et al. Lost-circulation control for formation-damage prevention in naturally fractured reservoir: mathematical model and experimental study[J]. SPE Journal, 2017, 22(5): 1654–1670. doi: 10.2118/182266-PA
    [13]
    IWASHITA D, MORITA N, TOMINAGA M. Shear-type borehole wall shifts induced during lost circulations[J]. SPE Drilling & Completion, 2008, 23(3): 301–313.
    [14]
    苏晓明,练章华,方俊伟,等. 适用于塔中区块碳酸盐岩缝洞型异常高温高压储集层的钻井液承压堵漏材料[J]. 石油勘探与开发,2019,46(1):168–172.

    SU Xiaoming, LIAN Zhanghua, Fang Junwei, et al. Lost circulation material for abnormally high temperature and pressure fractured-vuggy carbonate reservoirs in Tazhong Block, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1): 168–172.
    [15]
    李大奇,刘四海,康毅力,等. 天然裂缝性地层钻井液漏失规律研究[J]. 西南石油大学学报(自然科学版),2016,38(3):101–106. doi: 10.11885/j.issn.1674-5086.2014.06.05.04

    LI Daqi, LIU Sihai, KANG Yili, et al. Dynamic behavior of drilling fluid leakage in naturally fractured formations[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 101–106. doi: 10.11885/j.issn.1674-5086.2014.06.05.04
  • Cited by

    Periodical cited type(31)

    1. 高健,汪海阁,宋世贵,宋先知,杨培福,张彦龙. 中国石油工程作业智能支持中心模式改革与初探. 钻采工艺. 2025(01): 37-45 .
    2. 李凡,李大奇,刘金华,何仲,张杜杰. 顺北油田二叠系防漏堵漏技术进展及发展建议. 长江大学学报(自然科学版). 2024(02): 76-83 .
    3. 李荷婷,代俊清,李真祥. 四川盆地及周缘超深/特深探井酸压改造的实践与认识. 石油钻探技术. 2024(02): 202-210 . 本站查看
    4. 孙丙向,成海,毕研涛. 石油工程“四提”技术进展与攻关方向. 石油科技论坛. 2024(03): 85-94 .
    5. 胡耀太,项楠,刘凯,张燕,张兰兰,严思明,李新亮. 耐高温环保型聚羧酸油井水泥减阻剂. 油田化学. 2024(04): 588-595 .
    6. 李皋,梁斌斌,谢强,何龙,上官自然,杨旭. 彭州气田雷口坡组碳酸盐岩储层构造裂缝特征预测. 特种油气藏. 2024(06): 24-31 .
    7. 陈县伟. 深井超深井钻井技术现状和发展趋势. 化学工程与装备. 2023(01): 211-213 .
    8. 蔡振,张建鑫,郭少璞. 油田超深井钻井关键技术研究与分析. 石化技术. 2023(04): 101-103 .
    9. 赵庆哲,蓝强,郑成胜. 油基钻井液用乳化剂的研究现状及发展趋势. 山东化工. 2023(07): 88-90 .
    10. 高强,邱小庆,艾俊哲,梅平. 碳钢在油水混相介质中的CO_2/H_2S腐蚀行为. 腐蚀与防护. 2023(07): 64-68+85 .
    11. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
    12. 张亢,芦鑫,张家丽,朱德武,张玉荣. 特深层钻完井技术标准体系探讨. 石油工业技术监督. 2023(10): 39-44 .
    13. 刘建坤,蒋廷学,黄静,吴春方,贾文峰,陈晨. 纳米材料改善压裂液性能及驱油机理研究. 石油钻探技术. 2022(01): 103-111 . 本站查看
    14. 邸士莹,程时清,白文鹏,尚儒源,潘有军,史文洋. 裂缝性致密油藏注水吞吐转不稳定水驱开发模拟. 石油钻探技术. 2022(01): 89-96 . 本站查看
    15. 袁光杰,付利,王元,郭凯杰,陈刚. 我国非常规油气经济有效开发钻井完井技术现状与发展建议. 石油钻探技术. 2022(01): 1-12 . 本站查看
    16. 李新勇,李骁,赵兵,王琨,苟波. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术. 石油钻探技术. 2022(02): 92-98 . 本站查看
    17. 陈思安. 川东北长封固段小间隙固井技术. 内蒙古石油化工. 2022(05): 78-81 .
    18. 吴峙颖,胡亚斐,蒋廷学,张保平,姚奕明,董宁. 孔洞型碳酸盐岩储层压裂裂缝转向扩展特征研究. 石油钻探技术. 2022(04): 90-96 . 本站查看
    19. 魏辽. 基于井况的趾端滑套应用分析与结构改进. 天然气工业. 2022(S1): 102-105 .
    20. 张煜,李海英,陈修平,卜旭强,韩俊. 塔里木盆地顺北地区超深断控缝洞型油气藏地质-工程一体化实践与成效. 石油与天然气地质. 2022(06): 1466-1480 .
    21. 何弦桀,晏琰,杨晓明. 数显浮球液位仪研制与钻井溢漏预警试验. 钻采工艺. 2022(06): 107-112 .
    22. 李侃. 试论钻井技术及固井技术的发展. 科技创新与应用. 2021(04): 170-172 .
    23. 刘均一,陈二丁,李光泉,袁丽. 基于相变蓄热原理的深井钻井液降温实验研究. 石油钻探技术. 2021(01): 53-58 . 本站查看
    24. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看
    25. 解思维,唐国旺,王贵和. 一种生物水泥的研制. 断块油气田. 2021(03): 428-432 .
    26. 魏云锦,黄学刚,邹源红,徐伟宁,谢刚. 超支化聚合物HP-NH_2的合成及防塌机理研究. 西南石油大学学报(自然科学版). 2021(04): 99-108 .
    27. 汪海阁,黄洪春,毕文欣,纪国栋,周波,卓鲁斌. 深井超深井油气钻井技术进展与展望. 天然气工业. 2021(08): 163-177 .
    28. 刘国祥,赵德利,李振,孔博. 深井超深井短轻尾管短路故障测试方法与现场应用. 石油钻探技术. 2021(05): 70-74 . 本站查看
    29. 赵远远,周书胜,严锐,可点,邓亚慧. 国内抗高温乳化剂研究进展与应用. 辽宁化工. 2021(11): 1715-1717 .
    30. 樊永涛,张照鸿,贺泽阳,侯博文. 延长气田致密砂岩区块高效防塌钻井液体系研究. 当代化工. 2021(11): 2652-2655 .
    31. 王健. 国内深层页岩气钻井难点及技术进展. 石油化工应用. 2020(12): 1-5+20 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (710) PDF downloads (116) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return