LI Heting, DAI Junqing, LI Zhenxiang. Practices and understandings of acid fracturing of ultra/extra-deep exploratory wells in Sichuan Basin and its periphery [J]. Petroleum Drilling Techniques,2024, 52(2):202-210. DOI: 10.11911/syztjs.2024026
Citation: LI Heting, DAI Junqing, LI Zhenxiang. Practices and understandings of acid fracturing of ultra/extra-deep exploratory wells in Sichuan Basin and its periphery [J]. Petroleum Drilling Techniques,2024, 52(2):202-210. DOI: 10.11911/syztjs.2024026

Practices and Understandings of Acid Fracturing of Ultra/Extra-Deep Exploratory Wells in Sichuan Basin and Its Periphery

More Information
  • Received Date: December 25, 2023
  • Revised Date: March 02, 2024
  • Available Online: March 26, 2024
  • Compared with that of ordinary deep exploratory wells, the acid fracturing of ultra/extra-deep wells in the Sichuan Basin and its periphery faces the working environments featuring deeper wells, higher temperature and pressure, and more complicated fluid and lithology, and it has the problems of large operating friction, low flow rate, small scale, short effective distance of acid solution, poor fracturing result, unreliable tools, low success rate of the first operation execution, difficult security guarantee, expensive investment, and unsatisfactory yield. Therefore, the exploration progress of such wells is slow. By applying the latest achievements of the oil and gas industry and manufacturing industry in China and abroad, the technical research was conducted based on actual experiences and lessons, and the new large-diameter and high-strength air-tight seal pipe string was used to replace the traditional pipe string to reduce the friction and increase the flow rate. The bi-directional bimetal seal which could be motivated simultaneously was used to replace the bi-directional single-metal seal to test the sealability and maintain the long-term stability, so as to increase the wellhead control capacity; and the bi-directional anchored expansion packer was used to replace the bottom-anchored rotary pressure setting packer, so as to reduce the probability of cylinder movement and seal failure caused by pipe string expansion during acid fracturing. Multiple sets of shock absorbers were connected in series to reduce the adverse effects of detonation force, and the “four-valve-one-packer” method was adopted to replace the “two-valve-one-packer” method. In addition, the backup valves were connected in series to improve reliability, and the corrosion-inhibiting and velocity-retarding working fluid suitable for temperature of ≥220 °C and pressure of ≥180 MPa was developed. Equal emphasis was placed on simultaneous two-step operation and simultaneous three-step operation instead of the traditional emphasis on simultaneous two-step operation, and thus the optimum selection method of the acid fracturing process was established. The field application was progressing smoothly, and the safety guarantee ability, fracturing scale, fracturing effect, and success rate of the first operation execution were significantly improved, providing a reference for acid fracturing of similar wells.

  • [1]
    郭旭升,蔡勋育,刘金连,等. 中国石化 “十三五” 天然气勘探进展与前景展望[J]. 天然气工业,2021,41(8):12–22.

    GUO Xusheng, CAI Xunyu, LIU Jinlian, et al. Natural gas exploration progress of Sinopec during the 13th Five-Year Plan and prospect forecast during the 14th Five-Year Plan[J]. Natural Gas Industry, 2021, 41(8): 12–22.
    [2]
    何治亮,金晓辉,沃玉进,等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探,2016,21(1):3–14.

    HE Zhiliang, JIN Xiaohui, WO Yujin, et al. Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China[J]. China Petroleum Exploration, 2016, 21(1): 3–14.
    [3]
    孙斌,张培先,高全芳,等. 川东南南川地区茅口组一段碳酸盐岩储层特征及富集模式[J]. 非常规油气,2022,9(3):21–31.

    SUN Bin, ZHANG Peixian, GAO Quanfang, et al. Reservoir properties and accumulation mode of carbonate rocks in Mao1 Member of Nanchuan Area in southeast Sichuan[J]. Unconventional Oil & Gas, 2022, 9(3): 21–31.
    [4]
    马永生,蔡勋育,李慧莉,等. 深层–超深层碳酸盐岩储层发育机理新认识与特深层油气勘探方向[J]. 地学前缘,2023,30(6):1–13.

    MA Yongsheng, CAI Xunyu, LI Huili, et al. New insights into the formation mechanism of deep-ultra-deep carbonate reservoirs and the direction of oil and gas exploration in extra-deep strata[J]. Earth Science Frontiers, 2023, 30(6): 1–13.
    [5]
    孙自明,卞昌蓉,张荣强,等. 四川盆地东南部震旦系灯影组四段台缘带天然气勘探前景[J]. 现代地质,2022,36(4):979–987.

    SUN Ziming, BIAN Changrong, ZHANG Rongqiang, et al. Natural gas exploration prospect of the platform marginal zone of the fourth member of Sinian Dengying Formation in southeastern Sichuan Basin[J]. Geoscience, 2022, 36(4): 979–987.
    [6]
    林永茂, 缪尉杰, 刘林,等. 川西南靖和1井茅口组立体酸压技术[J]. 石油钻探技术,2022,50(2):105–112. doi: 10.11911/syztjs.2022009

    LIN Yongmao, MIAO Weijie, LIU Lin, et al. 3D acid fracturing technology in Maokou Formation of Well Jinghe 1 in Southwestern Sichuan[J]. Petroleum Drilling Techniques, 2022, 50(2): 105–112. doi: 10.11911/syztjs.2022009
    [7]
    曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术[J]. 石油钻探技术,2019,47(3):25–33.

    ZENG Yijin. Key technologies for safe and efficient drilling of marine carbonate ultra-deep oil and gas wells[J]. Petroleum Drilling Techniques, 2019, 47(3): 25–33.
    [8]
    马永生,黎茂稳,蔡勋育,等. 中国海相深层油气富集机理与勘探开发:研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质,2020,41(4):655–672.

    MA Yongsheng, LI Maowen, CAI Xunyu, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, 41(4): 655–672.
    [9]
    苏镖,龙刚,许小强,等. 超深高温高压高含硫气井的安全完井投产技术:以四川盆地元坝气田为例[J]. 天然气工业,2014,34(7):60–64.

    SU Biao, LONG Gang, XU Xiaoqiang, et al. Safe completion and production technologies of a gas well with ultra depth, high temperature, high pressure and high H2S content: a case from the Yuanba Gas Field in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(7): 60–64.
    [10]
    孙玉炳. 高温高压气井完井技术难点与对策[J]. 中国石油和化工标准与质量,2021,41(22):197–198.

    SUN Yubing. Difficulties and countermeasures of completion for HT/HP gas wells[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(22): 197–198.
    [11]
    贾学钰. 川西海相酸性气井试气工艺技术[J]. 石油地质与工程,2014,28(4):129–131.

    JIA Xueyu. Gas testing technology for marine acidic gas wells in western Sichuan[J]. Petroleum Geology and Engineering, 2014, 28(4): 129–131.
    [12]
    王勇军. 四川盆地元坝深层致密砂岩气藏超高压压裂测试工艺技术探索[J]. 天然气勘探与开发,2016,39(2):54–57.

    WANG Yongjun. Technology of ultra-high pressure fracturing test for deep and tight sandstone gas reservoirs, Yuanba Block[J]. Natural Gas Exploration and Development, 2016, 39(2): 54–57.
    [13]
    许小强,陈琛,戚斌,等. 川东北高温高压含硫超深气井测试技术实践[J]. 钻采工艺,2009,32(3):53–55.

    XU Xiaoqiang, CHEN Chen, QI Bin, et al. Well testing technology on high temperature and high pressure sulfurous ultra-deep reservoirs in northeast Sichuan[J]. Drilling & Production Technology, 2009, 32(3): 53–55.
    [14]
    杨廷玉,黎洪. 川东北高含硫气井测试作业安全控制技术浅谈[J]. 油气井测试,2012,21(3):72–74.

    YANG Tingyu, LI Hong. A brief discussion on security control technology of gas well testing operation containing high sulfur in northeastern Sichuan Gas Field[J]. Well Testing, 2012, 21(3): 72–74.
    [15]
    崔龙兵,樊凌云,邹伟,等. 顺北油田超深井可回收式套管封隔器失效因素分析及改进对策[J]. 油气井测试,2022,31(1):22–26.

    CUI Longbing, FAN Lingyun, ZOU Wei, et al. Failure factor analysis and improvement countermeasures of recyclable casing packer in ultra-deep wells in Shunbei Oilfield[J]. Well Testing, 2022, 31(1): 22–26.
    [16]
    卢刚,唐蜜,王毅. 超深酸性气藏APR测试事故分析及测试工艺优化研究[J]. 内蒙古石油化工,2016,42(8):31–33.

    LU Gang, TANG Mi, WANG Yi. Analysis of APR testing accidents in ultra deep acidic gas reservoirs and research on testing process optimization[J]. Inner Mongolia Petrochemical Industry, 2016, 42(8): 31–33.
    [17]
    刘洪涛,刘举,刘会锋,等. 塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J]. 天然气工业,2020,40(11):76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009

    LIU Hongtao, LIU Ju, LIU Huifeng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim Basin[J]. Natural Gas Industry, 2020, 40(11): 76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009
    [18]
    周生福,崔龙兵,刘练,等. 顺北油田三高油气井完井测试封隔器影响因素及对策[J]. 油气井测试,2019,28(3):37–41.

    ZHOU Shengfu, CUI Longbing, LIU Lian, et al. Influencing factors of completion test packer and countermeasure for 3-high oil and gas well in Shunbei Oilfield[J]. Well Testing, 2019, 28(3): 37–41.
    [19]
    陈科,胡桂林,张超伟. 川东北RTTS封隔器失封原因及对策[J]. 天然气技术与经济,2012,6(3):48–51.

    CHEN Ke, HU Guilin, ZHANG Chaowei. Causes of RTTS packer failure and the countermeasures in northeastern Sichuan Basin[J]. Natural Gas Technology and Economy, 2012, 6(3): 48–51.
    [20]
    王立军. RTTS封隔器胶筒问题浅析[J]. 油气井测试,2010,19(1):54–55.

    WANG Lijun. Analysis of problems about rubber element of RTTS packer[J]. Well Testing, 2010, 19(1): 54–55.
    [21]
    曹阳,贾宝,熊昕东,等. 元坝超深含硫气井测试事故分析与预防措施[J]. 石油钻采工艺,2012,34(6):49–52.

    CAO Yang, JIA Bao, XIONG Xindong, et al. Testing accident analysis and preventive measures for ultra-deep sulfur-bearing gas wells in Yuanba Gas Field[J]. Oil Drilling & Production Technology, 2012, 34(6): 49–52.
    [22]
    王宴滨,石小磊,高德利,等. 深层高温高压气井完井测试管柱失效分析:以顺南地区某井为例[J]. 石油钻采工艺,2022,44(3):302–308.

    WANG Yanbin, SHI Xiaolei, GAO Deli, et al. Failure analysis of completion test string for deep high-temperature and high-pressure gas well: a case study on a well in Shunnan area[J]. Oil Drilling & Production Technology, 2022, 44(3): 302–308.
    [23]
    汤火林,张天翊,黄刚,等. 高密度压井液环境下某井APR测试替喷技术[J]. 油气井测试,2023,32(3):17–21.

    TANG Huolin, ZHANG Tianyi, HUANG Gang, et al. APR testing bullheading technique in high-density well killing fluid environment[J]. Well Testing, 2023, 32(3): 17–21.
    [24]
    吴建军,龙学,黄力,等. 元坝1-侧1井高温高压高含硫超深大斜度井测试技术[J]. 钻采工艺,2012,35(3):34–35.

    WU Jianjun, LONG Xue, HUANG Li, et al. Gas test technique for super-deep well YB1-C1 with HTHP and high sour[J]. Drilling & Production Technology, 2012, 35(3): 34–35.
    [25]
    杨波,范蓉,罗凌睿. 川西含硫气井测试工艺技术及应用[J]. 天然气技术与经济,2018,12(4):42–44.

    YANG Bo, FAN Rong, LUO Lingrui. Well testing technologies and their application to sour gas wells, western Sichuan Basin[J]. Natural Gas Technology and Economy, 2018, 12(4): 42–44.
    [26]
    纪松,宫建. 高温高压井测试联作射孔技术研究及应用[J]. 复杂油气藏,2013,6(3):76–78.

    JI Song, GONG Jian. Research and application of perforating and testing combination technology in high temperature and high pressure well[J]. Complex Hydrocarbon Reservoirs, 2013, 6(3): 76–78.
    [27]
    张明江,张果. 川东北高温、高压、高含硫气井测试地面控制应用技术研究[J]. 油气井测试,2009,18(1):56–57.

    ZHANG Mingjiang, ZHANG Guo. Technology study on surface controlling of well test in gas wells with high temperature, high pressure and high sulfur content in north-east of Sichuan[J]. Well Testing, 2009, 18(1): 56–57.
    [28]
    崔龙兵,刘练,周生福,等. 顺北油田“三高”油气井试井工艺技术[J]. 油气井测试,2020,29(3):57–63.

    CUI Longbing, LIU Lian, ZHOU Shengfu, et al. Well test processes of oil and gas wells with “three highs” in Shunbei Oilfield[J]. Well Testing, 2020, 29(3): 57–63.
    [29]
    丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069

    DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069
    [30]
    马健,杨永华,何颂根,等. 川西超深海相碳酸盐岩超高压分段酸压技术实践[J]. 钻采工艺,2021,44(1):57–60.

    MA Jian, YANG Yonghua, HE Songgen, et al. Practice of ultra-high-pressure staged acid fracturing in western Sichuan ultra-deep marine carbonate[J]. Drilling & Production Technology, 2021, 44(1): 57–60.
    [31]
    陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10.

    CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10.
    [32]
    罗伟,林永茂,李海涛. 碳酸盐岩储层射孔穿深的影响规律[J]. 爆破器材,2020,49(1):49–53. doi: 10.3969/j.issn.1001-8352.2020.01.010

    LUO Wei, LIN Yongmao, LI Haitao. Dependence of perforating penetration depth on properties of carbonate reservoir[J]. Explosive Materials, 2020, 49(1): 49–53. doi: 10.3969/j.issn.1001-8352.2020.01.010
    [33]
    SY/T 5440—2000 天然气井试井技术规范[S].

    SY/T 5440—2000 Technical specifications for natural gas well test[S].
  • Related Articles

    [1]LIU Junyi, LI Gongrang, HUANG Limin, MA Xiaoyong, XIA Ye. Research and Application of Environmental Protection Technologies for Drilling Fluid Treatment in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2024, 52(3): 47-52. DOI: 10.11911/syztjs.2023110
    [2]HE Licheng. A Cementing Technology for Horizontal Shale Oil Wells in Shahejie Formation of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 45-50. DOI: 10.11911/syztjs.2022062
    [3]SHU Yiyong, SUN Jun, ZENG Dong, XU Sixu, ZHOU Huaan, XI Yunfei. Study and Field Test of Drilling Fluid with Constant Rheology at High Temperature in West Yueman Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 39-45. DOI: 10.11911/syztjs.2021037
    [4]ZHAO Bo, CHEN Erding. Drilling Technologies for Horizontal Shale Oil Well Fan Yeping 1 in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 53-58. DOI: 10.11911/syztjs.2021078
    [5]HAN Laiju, LI Gongrang. Progress, Development Trends, and Outlook for Drilling Environmental Protection Technologies in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(3): 89-94. DOI: 10.11911/syztjs.2019057
    [6]WU Shuang. Solid-Free and Strongly Inhibitive Water-Based Drilling Fluid in the Liaohe Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 42-48. DOI: 10.11911/syztjs.201706008
    [7]HAN Laiju. The Latest Progress and Suggestions of Drilling and Completion Techniques in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(1): 1-9. DOI: 10.11911/syztjs.201701001
    [8]Qiao Jun, Yu Lei, Zhang Shouwen, Liu Baofeng, Zhang Zhicai, Yang Jingli. Drilling Fluid Technology for a Long Horizontal Section in a Turbidite Reservoir of the Bonan Depression, Shengli Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 58-62. DOI: 10.11911/syztjs.201501010
    [9]Zhang Shuqing, Ma Yichao, Gao Guangjun, Ren Zhongqi, Liu Quanjiang. Drilling Technologies for Well Caishi-P1 in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(4): 120-124. DOI: 10.3969/j.issn.1001-0890.2013.04.026
    [10]Sui Mei. Technical Difficulties and Countermeasures in Cementing of Deep Exploration Wells in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(3): 73-79. DOI: 10.3969/j.issn.1001-0890.2013.03.014
  • Cited by

    Periodical cited type(7)

    1. 王磊,胡松,齐真真. 水平井缝洞储层双侧向测井响应数值模拟分析. 非常规油气. 2024(05): 20-27 .
    2. 李丰丰,蔡文渊,倪小威,徐思慧,刘春,刘迪仁. 过井眼洞穴型地层钻头电阻率测井响应特征分析. 石油物探. 2023(05): 990-998 .
    3. 赖强,唐军,吴煜宇,许巍,谢冰,金燕. 大斜度井双侧向测井响应数值模拟及电阻率各向异性校正方法. 石油地球物理勘探. 2022(03): 706-712+496-497 .
    4. 潘卫国,吴丰,孟凡. 碳酸盐岩溶孔溶洞型储层双侧向测井响应数值模拟. 科学技术与工程. 2022(23): 10022-10033 .
    5. 王永涛,王书纯,邵春. 基于NB-IoT的双侧向测井仪远程监测系统设计. 电子设计工程. 2022(19): 1-5 .
    6. 王永涛,王书纯,朱珺,邵春. 用于双侧向测井仪的信号滤波电路设计. 电子设计工程. 2022(20): 1-5 .
    7. 刘晶晶,毛毳,魏荷花,权莲顺,刘泽璇. 塔河油田奥陶系缝洞充填序列及其测井响应. 新疆石油地质. 2021(01): 46-52 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (86) PDF downloads (63) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return