LIU Jiankun, JIANG Tingxue, HUANG Jing, WU Chunfan, JIA Wenfeng, CHEN Chen. Study on Mechanism of the Fracturing Fluid Performance Improvement and Oil Displacement Using Nanomaterials[J]. Petroleum Drilling Techniques, 2022, 50(1): 103-111. DOI: 10.11911/syztjs.2021118
Citation: LIU Jiankun, JIANG Tingxue, HUANG Jing, WU Chunfan, JIA Wenfeng, CHEN Chen. Study on Mechanism of the Fracturing Fluid Performance Improvement and Oil Displacement Using Nanomaterials[J]. Petroleum Drilling Techniques, 2022, 50(1): 103-111. DOI: 10.11911/syztjs.2021118

Study on Mechanism of the Fracturing Fluid Performance Improvement and Oil Displacement Using Nanomaterials

More Information
  • Received Date: October 22, 2020
  • Revised Date: October 31, 2021
  • Available Online: October 27, 2021
  • To provide a theoretical basis for the development of functional fracturing fluids, SiO2 was modified with C8 and quaternary ammonium salt (QAS) on nanoscale (50 nm). The hydrophobic nanomaterial SiO2-C8 and hydrophobic charged nanomaterial SiO2-QAS were synthesized. The compatibility, stability, and comprehensive performance of the SRFP polymer clean fracturing fluid systems were evaluated as nanomaterials SiO2, SiO2-C8, and SiO2-QAS were added. Quantitative simulation methods were employed to build the adsorption structure models and adsorption kinetics models of the nanomaterials on the sandstone surface. The adsorption and oil-water separation characteristics of nanomaterials on sandstone surfaces were analyzed. The experimental and simulation results show that the three nanomaterials, SiO2, SiO2-C8, and SiO2-QAS, display favorable dispersion stability in fracturing fluids. They can effectively reduce the surface and interfacial tension and demonstrate good temperature and shear resistance. SiO2-C8 and SiO2-QAS nanomaterials are beneficial to the replacement of oil molecules on the sandstone surface and the oil-water separation when they are added into fracturing fluids. The addition of nanomaterials SiO2-C8 and SiO2-QAS can also effectively improve the performance of fracturing fluids, enhance oil displacement, and reduce oil saturation within the spread range of fracturing fluids. The research results can provide a theoretical basis for the development of functional fracturing fluids and a reference for fracturing design optimization and fracturing fluid selection for tight oil and shale oil.
  • [1]
    夏宏泉,梁景瑞,文晓峰. 基于CQ指标的长庆油田长6—长8段致密油储层划分标准研究[J]. 石油钻探技术,2020,48(3):114–119.

    XIA Hongquan, LIANG Jingrui, WEN Xiaofeng. The standard division of tight oil reservoirs in Chang 6-8 Members of Changqing Oilfield based on CQ index[J]. Petroleum Drilling Techniques, 2020, 48(3): 114–119.
    [2]
    丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20.

    DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20.
    [3]
    王晓雯. 致密油藏储层敏感性评价及主控因素研究[J]. 特种油气藏,2021,28(1):103–110.

    WANG Xiaowen. Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 103–110.
    [4]
    孙金声,许成元,康毅力,等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术,2020,48(4):1–10.

    SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1–10.
    [5]
    崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术[J]. 石油钻探技术,2021,49(2):9–13.

    CUI Yueming, SHI Haimin, ZHANG Qing. Optimized drilling and completion technology for horizontal wells in tight oil reservoirs in the Jilin Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 9–13.
    [6]
    巩联浩,刘继梓,武兴,等. 裂缝性致密油藏二氧化炭吞吐基质–裂缝间流体渗流特征研究[J]. 特种油气藏,2021,28(1):118–124.

    GONG Lianhao, LIU Jizi, WU Xing, et al. Study on seepage characteristics of fluid between matrix and fracture in CO2 huff-puff process in fractured tight reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 118–124.
    [7]
    王彦玲,王坤,金家锋,等. 纳米材料在压裂液体系中的应用进展[J]. 精细石油化工,2016,33(6):63–67. doi: 10.3969/j.issn.1003-9384.2016.06.015

    WANG Yanling, WANG Kun, JIN Jiafeng, et al. The application of nanometer material in fracturing fluid system[J]. Speciality Petrochemicals, 2016, 33(6): 63–67. doi: 10.3969/j.issn.1003-9384.2016.06.015
    [8]
    韦青,李治平,白瑞婷,等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术,2016,44(5):109–116.

    WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition tight sandstone[J]. Petroleum rilling Techniques, 2016, 44(5): 109–116.
    [9]
    郭建设,周福建,胡晓玲,等. 三塘湖盆地致密油水平井增能压裂力学机理[J]. 断块油气田,2021,28(1):57–62. doi: 10.3969/J.ISSN.1000-3754.2013.05.020

    GUO Jianshe, ZHOU Fujian, HU Xiaoling, et al. Mechanical mechanism of horizontal well energized fracturing of tight oil in Santanghu Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 57–62. doi: 10.3969/J.ISSN.1000-3754.2013.05.020
    [10]
    白晓虎,齐银,何善斌,等. 致密储层水平井压裂–补能–驱油一体化重复改造技术[J]. 断块油气田,2021,28(1):63–67.

    BAI Xiaohu, QI Yin, HE Shanbin, et al. Integrated re-stimulating technology of fracturing-replenishment-displacement of horizontal wells in tight reservoirs[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 63–67.
    [11]
    彭振,王中华,何焕杰,等. 纳米材料在油田化学中的应用[J]. 精细石油化工进展,2011,12(7):8–12. doi: 10.3969/j.issn.1009-8348.2011.07.003

    PENG Zhen, WANG Zhonghua, HE Huanjie, et al. Application of nanometer materials in oilfield chemistry[J]. Advances in Fine Petrochemicals, 2011, 12(7): 8–12. doi: 10.3969/j.issn.1009-8348.2011.07.003
    [12]
    侯吉瑞,闻宇晨,屈鸣,等. 纳米材料提高油气采收率技术研究及应用[J]. 特种油气藏,2020,27(6):47–53.

    HOU Jirui, WEN Yuchen, QU Ming, et al. Research and application of nano-materials to enhance oil and gas recovery technolo-gy[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 47–53.
    [13]
    蒋莉,袁丽,郑清国. 纳米膨润土复合体的研究与应用[J]. 石油钻探技术,2009,37(3):57–60.

    JIANG Li, YUAN Li, ZHENG Qingguo. Researches and application of nanometer bentonite complex[J]. Petroleum Drilling Techniques, 2009, 37(3): 57–60.
    [14]
    褚奇,孔勇,杨帆,等. 多苯基芳基硅烷偶联剂改性纳米SiO2封堵剂[J]. 断块油气田,2017,24(2):281–284.

    CHU Qi, KONG Yong, YANG Fan, et al. Nano-silica dioxide plugging agent modified by polyphenyl aryl silanes coupling agent[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 281–284.
    [15]
    李强,李志勇,张浩东,等. 响应面法优化纳米材料稳定的泡沫钻井液[J]. 钻井液与完井液,2020,37(1):23–30.

    LI Qiang, LI Zhiyong, ZHANG Haodong, et al. Study on foam drilling fluid stabilized with nanometerials optimized with RSM[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 23–30.
    [16]
    任保友,蒲晓林,曹成,等. 纳米钻井液提高地层承压能力实验[J]. 石油钻采工艺,2018,40(2):179–184.

    REN Baoyou, PU Xiaolin, CAO Cheng, et al. Experimental study on improving the formation pressure-bearing capacity by using nano-drilling fluid[J]. Oil Drilling & Production Technology, 2018, 40(2): 179–184.
    [17]
    辛迎春. 纳米SiO2 改性稠油高效破乳剂的研制及应用[J]. 石油钻探技术,2008,35(5):75–77.

    XIN Yingchun. Research and application of modified nano-sized silica demulsifier for heavy oil[J]. Petroleum Drilling Techniques, 2008, 35(5): 75–77.
    [18]
    王伟吉,邱正松,钟汉毅,等. 钻井液用新型纳米润滑剂SD-NR的制备及特性[J]. 断块油气田,2016,23(1):113–116.

    WANG Weiji, QIU Zhengsong, ZHONG Hanyi, et al. reparation and properties of nanoparticle-based lubricant SD-NR for drilling fluids[J]. Fault-Block Oil & Gas Field, 2016, 23(1): 113–116.
    [19]
    雷天猛,王秀军,王姗姗,等. 纳米二氧化硅改性聚合物的油藏适用性评价与微观驱油效果研究[J]. 石油钻探技术,2021,49(1):107–112.

    LEI Tianmeng, WANG Xiujun, WANG Shanshan, et al. Research on reservoir applicability evaluation and micro oil flooding effect of a nano-Silica modified polymer[J]. Petroleum Drilling Techniques, 2021, 49(1): 107–112.
    [20]
    王胜,谌强,袁学武,等. 适用于低温地层的纳米复合水泥浆体系研究[J]. 石油钻探技术,2021,49(6):73–80.

    WANG Sheng, CHEN Qiang, YUAN Xuewu, et al. Research on a nano-composite cement slurry system suitable for low-temperature formations[J]. Petroleum Drilling Techniques, 2021, 49(6): 73–80.
    [21]
    HUANG T, CREWS J B, AGRAWAL G. Nanoparticle pseudocrosslinked micellar fluids: optimal solution for fluid-loss control with internal breaking[R]. SPE 128067, 2010.
    [22]
    CREWS J B, HUANG Tianping. Performance enhancements of viscoelastic surfactant stimulation fluids with nanoparticles[R]. SPE 113533, 2008.
    [23]
    CREWS J B, HUANG Tianping, WOOD W R. The future of fracturing-fluid technology and rates of hydrocarbon recovery[R]. SPE 115475, 2008.
    [24]
    CREWS J B, GOMAA A M. Nanoparticle-associated surfactant micellar fluids: an alternative to crosslinked polymer systems[R]. SPE 157055, 2012.
    [25]
    GURLUK M R, NASR-EL-DIN H A, CREWS J B. Enhancing the performance of viscoelastic surfactant fluids using nanoparticles[R]. SPE 164900, 2013.
    [26]
    杨兆中,朱静怡,李小刚,等. 含纳米颗粒的黏弹性表面活性剂泡沫压裂液性能[J]. 科学技术与工程,2018,18(10):42–47. doi: 10.3969/j.issn.1671-1815.2018.10.007

    YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. The performance of viscoelastic foamed fracturing fluids with nanoparticles[J]. Science Technology and Engineering, 2018, 18(10): 42–47. doi: 10.3969/j.issn.1671-1815.2018.10.007
    [27]
    段瑶瑶,杨战伟,杨江,等. 一种新型纳米复合清洁压裂液的研究与应用[J]. 科学技术与工程,2016,16(30):68–72. doi: 10.3969/j.issn.1671-1815.2016.30.011

    DUAN Yaoyao, YANG Zhanwei, YANG Jiang, et al. Research and application of a new nanocomposite cleaning fracturing fluid[J]. Science Technology and Engineering, 2016, 16(30): 68–72. doi: 10.3969/j.issn.1671-1815.2016.30.011
    [28]
    杜涛,姚奕明,蒋廷学,等. 新型疏水缔合聚合物压裂液综合性能评价[J]. 精细石油化工,2014,31(3):72–76. doi: 10.3969/j.issn.1003-9384.2014.03.017

    DU Tao, YAO Yiming, JIANG Tingxue, et al. Study on properties of new hydrophobic associating polymer fracturing fluid[J]. Speciality Petrochemicals, 2014, 31(3): 72–76. doi: 10.3969/j.issn.1003-9384.2014.03.017
    [29]
    杜涛,姚奕明,蒋廷学,等. 新型疏水缔合聚合物压裂液性能研究与现场应用[J]. 精细石油化工,2015,32(2):20–24. doi: 10.3969/j.issn.1003-9384.2015.02.005

    DU Tao, YAO Yiming, JIANG Tingxue, et al. Properties and field application of a novel hydrophobic associating polymer fracturing fluid[J]. Speciality Petrochemicals, 2015, 32(2): 20–24. doi: 10.3969/j.issn.1003-9384.2015.02.005
    [30]
    潘意坤,郭平,罗强,等. 致密气在α-SiO2(010)面吸附的第一性原理研究[J]. 原子与分子物理学报,2018,35(3):415–421. doi: 10.3969/j.issn.1000-0364.2018.03.009

    PAN Yikun, GUO Ping, LUO Qiang, et al. First-principles calculation of adsorption for tight gas on α-SiO2(010) surface[J]. Journal of Atomic and Molecular Physics, 2018, 35(3): 415–421. doi: 10.3969/j.issn.1000-0364.2018.03.009
  • Related Articles

    [1]WANG Xiaojun, PING Shanhai, FU Yunbo, LI Ying, ZHANG Jianhui, DAI Yuncai. Development and Application of High Temperature Resistance and Anti-Sloughing Water-Based Drilling Fluid System[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025009
    [2]YANG Kaiji, ZHANG Ying, WEI Qiang, CHENG Yan, LIU Quangang. Development and Performance Evaluation of Emulsion Polymer with Temperature Resistance and Salt Resistance Used in Offshore Oilfield Development[J]. Petroleum Drilling Techniques, 2024, 52(4): 118-127. DOI: 10.11911/syztjs.2024010
    [3]ZHOU Qicheng, LIANG Yinghong, SHAN Haixia, HUANG Tao, GUO Anping, WANG Junxiang. Research and Application of a High-Temperature Resistant and High-Density Biomass Drilling Fluid System[J]. Petroleum Drilling Techniques, 2022, 50(6): 78-84. DOI: 10.11911/syztjs.2022109
    [4]MING Yuguang, LAN Qiang, LI Hui, LIU Zhendong, BU Fankang. Research and Field Testing of High Temperature Resistant Foam Drilling Fluid in Deep Wells[J]. Petroleum Drilling Techniques, 2018, 46(6): 47-53. DOI: 10.11911/syztjs.2018139
    [5]MAO Jincheng, YANG Xiaojiang, SONG Zhifeng, ZHANG Junjiang, WANG Lei, ZHAO Jinzhou. Development and Performance Evaluation of High Temperature Resistant Clean Fracturing Fluid System HT-160[J]. Petroleum Drilling Techniques, 2017, 45(6): 105-109. DOI: 10.11911/syztjs.201706019
    [6]ZHANG Junjiang, DU Linlin, YING Hailing, ZHANG Bin. Synthesis and Field Tests of High Temperature Resistant and Salt Tolerant Acid ThickenerTP-17[J]. Petroleum Drilling Techniques, 2017, 45(6): 93-98. DOI: 10.11911/syztjs.201706017
    [7]ZHANG Yaoyuan, MA Shuangzheng, WANG Guanxiang, HAN Xu, CUI Jie. A Study and Field Test for Solid-Free High Temperature Resistance Hydrophobic Association Polymer Drilling Fluid[J]. Petroleum Drilling Techniques, 2016, 44(6): 60-66. DOI: 10.11911/syztjs.201606010
    [8]JIANG Guancheng, HUANG Kai, LI Xinliang, DENG Zhengqiang, WANG Kai, ZHAO Li. Research on High Temperature Resistance and High-Density Clay-Free Diesel Oil-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2016, 44(6): 24-29. DOI: 10.11911/syztjs.201606004
    [9]Li Yan. Development and Performance Evaluation of the High Temperature Resistant Polymer Fluid Loss Agent AAS[J]. Petroleum Drilling Techniques, 2015, 43(4): 96-101. DOI: 10.11911/syztjs.201504017
    [10]Yang Xiaofeng. Application of High Temperature Resisting sureshot-MWD in Xinggu 7 Block[J]. Petroleum Drilling Techniques, 2012, 40(1): 119-122. DOI: 10.3969/j.issn.1001-0890.2012.01.024

Catalog

    Article Metrics

    Article views (794) PDF downloads (129) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return